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Abstract

The Combinatorial Clock Auction (CCA) has frequently been used in
recent spectrum auctions. It combines a dynamic clock phase and a one-off
supplementary round. The winning allocation and the corresponding prices
are determined by the VCG rules. These rules should encourage truthful
bidding, whereas the clock phase is intended to reveal information. We
inquire into the role of the clock when bidders have lexicographic preferences
for raising rivals’ costs. We show that in an efficient equilibrium the clock
cannot fully reveal bidders’ types. In the spirit of the ratchet effect, in the
supplementary round competitors will extract surplus from strong bidders
whose type is revealed. We also show that if there is substantial room for
information revelation, that is, if the uncertainty about the final allocation
is large, all equilibria of the CCA are inefficient. Qualitative features of
our equilibria are in line with evidence concerning bidding behavior in some
recent CCAs.
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1 Introduction

In recent years, many regulators around the world have chosen the Combinatorial

Clock Auction (CCA) to allocate telecommunication spectrum. The CCA has par-

tially replaced the older Simultaneous Ascending Auction (SAA) for two reasons.

First, in the SAA, bidders may strategically reduce demand. If it is relatively

clear to the bidders what the final allocation of an auction is where bidders bid

competitively, then they have an incentive to reach the same allocation at much

lower prices (Grimm et al., 2003). The SAA provides bidders with the possibil-

ity of reaching such a non-competitive outcome. The sophisticated design of the

CCA should overcome this issue as it incorporates (i) a generalized second-price

(Vickrey) rule providing bidders with an incentive to bid truthfully (Cramton,

2013), and (ii) a clock phase that should facilitate “price and package discovery”

(Ausubel, Cramton and Milgrom, 2006). Second, in contrast to the SAA, bidders

can express bids for packages in the CCA. Package bidding is deemed to be im-

portant as current spectrum auctions allocate multiple units where bidders may

value a package of licenses more than the sum of the individual components. If

that is the case the SAA, but not the CCA, suffers from the well-known exposure

problem, i.e., at the end of the auction bidders may end up with a few units at a

price that is more than their value for these units. The focus of this paper is the

first issue: is it the case that the CCA provides bidders with an incentive to bid

truthfully and that the clock phase facilitates price and package discovery?

The CCA is a dynamic version of the Vickrey-Clarke-Groves (VCG) mechanism

and consists of two integrated phases.1 In the first clock phase, bidders express

their demand on packages at given prices in every round. If for a certain good,

demand is larger than supply in a given round, then the price for that good is

increased in the next round. The clock phase ends when demand is not larger

than supply for all the auctioned goods. Importantly, no goods are allocated and

no prices are determined at the end of the clock phase. Instead, the clock phase

imposes constraints on the bids that are allowed in the second, supplementary,

phase. In that one-off sealed-bid phase, bidders can bid on as many additional

packages as they like and they may raise bids on packages they have bid on in

the clock phase. At the end of the supplementary phase, goods are allocated, and

prices are determined. The auctioneer uses all the bids from the clock phase and

the supplementary phase to determine the value-maximizing combination of bids,

1In practice, there is a third phase–the assignment phase. In this phase, generic packages
are allocated. We abstract away from this phase since it does not affect our analysis.
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while the Vickrey-pricing rule determines the prices winners pay.

Without the clock phase, the CCA reduces to the VCG mechanism. As the

number of packages is an exponential function of the number of commodities,

bidders in a VCG auction may need to consider bidding on a vast number of

packages. In particular, if the uncertainty concerning competitors is large, bidders

may have a fairly limited idea about the package they may eventually win and

at which price. Through ‘price and package discovery’, the clock phase is meant

to reveal this kind of information. Bidders can then focus their bidding in the

supplementary round on the packages that may still be winning.

Under standard preferences, truthful bidding in the clock and supplementary

phase is indeed an equilibrium. If bidders bid truthfully, the outcome is efficient.

However, truthful bidding is not a strict equilibrium as bidders may be indifferent

across many permissible bids in the supplementary round (Levin and Skrzypacz,

2016). To eliminate the payment relevant indifferences, we consider bidders that

ceteris paribus prefer outcomes where competitors pay more. We model this ob-

jective as a secondary dimension in a lexicographic way.

Our first main result is that if bidders have a lexicographic preference for

raising rivals’ costs, an efficient fully revealing equilibrium does not exist. This

result implies that the CCA exhibits a fundamental trade-off between efficiency

and information revelation in the clock phase. The trade-off follows from the fact

that if bidders bid truthfully in the clock phase, the clock fully reveals information

about the bidders’ types. Bidders would like to use this information to maximally

raise the rival’s cost by placing bids in the supplementary phase on large packages

that they know cannot be winning. The stronger their competitor, the more they

can raise their price. The rules of the CCA are such that bidders are only able

to raise the rival’s cost if they expand demand in the clock phase as this relaxes

the constraints on the supplementary phase bids. Predicting that the clock phase

eventually will fully reveal information, bidders can expand demand in the early

phase of the clock without the risk of affecting the final allocation. Knowing

that the competitor is able and inclined to raise their cost if their types are fully

revealed, stronger bidders have an incentive to pool with weaker types in the clock

phase.

This result is best understood from the perspective of the ratchet effect known

from the dynamic principal-agent literature (Laffont and Tirole, 1988). In that

literature, an agent may have an incentive not to reveal his type to a principal if

the principal could use that information to extract more surplus from the agent

in future interactions. In our case, knowing the competitor is strong, a bidder
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(by bidding more aggressively in the supplementary phase) may increase the price

the competitor has to pay beyond what it would be if the competitor’s type were

unknown. Rationally anticipating this exploitation, stronger bidders prefer to

pool with weaker types. The intuition for our first main result differs in two

dimensions from the traditional ratchet effect. First, unlike the principal-agent

model, the roles of bidders in an auction are symmetric to one another so that

each bidder is both the object of and the initiator of surplus extraction. Second,

the extent to which bidders can raise the rival’s cost in the supplementary round

is not exogenously given, but endogenously determined by their behavior in the

clock phase. Thus, bidders will only be able to raise the rival’s cost if they expand

demand in the clock phase.

The result that fully revealing efficient equilibria do not exist does not rule out

the existence of efficient equilibria. Even with lexicographic preferences for raising

rival’s cost, efficient equilibria exist. We present examples of efficient equilibria,

where to be able to raise rival’s cost, bidders demand the full supply (even if

prices are such that truthful bidding would tell them to demand less).2 The

demand expansion phase ends with a sudden switch to truthful bidding. In one

type of equilibrium, the clock stops immediately when all bidders drop demand.

In such an equilibrium, there is no price or package discovery whatsoever. This

clock phase development allows all bidders to bid their true marginal values in the

supplementary round. As a result, the final allocation is efficient. We show that

any efficient equilibrium of the CCA involves this type of demand expansion in

the clock phase.

Our second main result is that if the uncertainty concerning the competitor’s

type is sufficiently large, all equilibria of the CCA are inefficient. Efficiency and the

high uncertainty require that weak bidders drop out at relatively high prices. Due

to the spite motive, some strong bidders expand demand prior to these dropout

prices. When the clock does not end, a relatively strong bidder infers from the

continuation of the clock that the competitor is not too weak. This type of learning

creates the opportunity for the strong bidder to make the supplementary round

behavior conditional on the price at which the clock phase stops. Knowing the

competitor is not too weak, the strong bidder can raise the rival’s cost more

without running the risk of winning an inferior share. Consequently, some types

have an incentive to obfuscate their type and do this by reducing demand towards

the end of the clock phase. This demand reduction rules out expressing true

2This is in line with, for example, the Austrian 2013 auction where (as we mention below)
bidders were bidding very aggressively in the clock phase.
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marginal values for all shares in the supplementary round, resulting in an inefficient

final allocation. As we also show that the static VCG mechanism always has

efficient equilibria, we claim that it is the clock phase that creates this inefficiency.3

Ausubel (2004, p. 1452) has stated that “the auctions literature has provided

us with two fundamental prescriptions guiding effective auction design”: first,

“the winner’s price should depend solely on opposing participants’ bids—as in

the sealed-bid, second-price auction—so that each participant has full incentive to

reveal truthfully her value for the good. Second, an auction should be structured

in an open fashion that maximizes the information made available to each partic-

ipant at the time she places her bids.” Our results show that following these two

prescriptions can be at the expense of generating efficient outcomes in multi-unit

auctions where bidders have a weak incentive to raise rivals’ costs. If efficiency is

preserved, then the information that is revealed through the open format is fairly

limited.

The lexicographic modeling of bidders’ preference for raising the rivals’ costs

implies that if two bidding strategies yield the same expected surplus to a bidder,

the bidder chooses the strategy where the rival pays more.4 The motivation to

raise rivals’ costs may arise from (i) principal-agent issues within a firm (bidder)5

or from (ii) the fact that (in spectrum auctions) bidders face weaker competitors

in the market after an auction if competitors have paid more for their licenses. If

firm A makes B pay more for spectrum, B’s credit rating may fall, and its cost of

capital may go up, weakening its strategic position. Milgrom (2004) and Cramton

and Ockenfels (2017) mention fairness as a reason why bidders may want to raise

rivals’ costs.

The motivation to raise rivals’ costs motive has become a concern in designing

auctions.6 After the 2013 auction, the Austrian regulator RTR attributed the high

3Note that as we do not present an alternative auction model that is clearly better than the
CCA (or the SMRA), the CCA cannot be fully discarded on these grounds. Nevertheless, it is
important to understand that the CCA rules can be gamed and the consequences this may have.

4The analysis with lexicographic preferences provides a robustness check on the equilibria
under standard preferences: equilibria under our preferences are also equilibria under standard
preferences, but the reverse does not necessarily hold true.

5In spectrum auctions, given the considerable uncertainty concerning future technological
developments and uptake of data services, it is difficult for bidders to evaluate what the spec-
trum is worth. Valuations are highly subjective. Accordingly, if a bidder wants to have a more
objective evaluation measure of their bidding team’s performance, it might be better to evalu-
ate performance relative to other bidders, than relative to their own uncertain and subjective
valuation.

6See, e.g., (i) BAKOM (2012) on the outcome of the Swiss auction and subsequent discussion
on why Sunrise paid much more for comparable spectrum than other bidders, (ii) Ofcom (2012,
page 122, point 7.9.) in response to an earlier consultation on the UK LTE auction in 2013.
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revenue to overly aggressive behavior by bidders: during the clock phase, bidders

were bidding very aggressively, and the majority of the supplementary bids were

on very large packages that had a low probability of winning but played a crucial

role in determining other bidders’ prices. The fact that payments in the Austrian

auction were essentially the same as the final clock prices is a clear signal of aggres-

sive bidding, as with Vickrey pricing and ‘downward sloping demand’ one would

not expect marginal and average prices to be identical. The observed behavior,

however, is reminiscent of the equilibria we describe. Moreover, the British reg-

ulator Ofcom (2014, p. 38, 6.73-6.77) explicitly mentions the possibility of price

driving by placing “risk-free bids” in the supplementary phase as a problematic

aspect of the CCA. Some of the potential bidders’ responses share this concern

(e.g., BT, 2015). None of these arguments for raising rivals’ costs implies that

bidders should have a lexicographic preference for doing so; lexicographic prefer-

ences are, however, a useful modeling approach to inquire into the robustness of

the results of the CCA to slight changes in assumptions regarding preferences.

This is the first paper that provides a full equilibrium analysis of the CCA when

bidders have a lexicographic preference for raising rivals’ costs. The most closely

related paper is Levin and Skrzypacz (2016). They put forward a sequence of

three related models in which, as in our study, two players compete for a perfectly

divisible good in the CCA. In some parts of their analysis, they also consider

spiteful bidders.

In a first model where bidders have standard preferences, Levin and Skrzypacz

(2016) elegantly uncover the existence of multiple equilibria due to a key indif-

ference condition. Both bidders use linear proxy clock demand functions so that

the clock ends with market clearing. The activity rules then permit a specific

range of supplementary bids that are all such that the final clock allocation is the

final allocation. As the activity rules fix the allocation, the VCG pricing scheme

makes bidders with standard preferences indifferent across all supplementary bids.

How bidders resolve the indifference impacts optimal clock behavior, leading to a

multiplicity of equilibria.

This indifference partly motivates Levin and Skrzypacz (2016) to consider

spiteful lexicographic preferences in their next two models. In their second model,

they (exogenously) restrict one bidder to linear proxy strategies. It is, however,

not clear why one of the ex-ante symmetric bidders would prefer to restrict himself

and take this disadvantageous role. In the online appendix, Levin and Skrzypacz

(2016) discuss a third model with two predatory bidders. This model is closest

to the model we analyze in our paper. In that third model, Levin and Skrzypacz
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(2016) have bidders using linear proxy strategies in the clock phase, but weaken

the constraints on supplementary bids implied by this clock behavior and the

activity rules. Technically, they achieve this by introducing an exogenous param-

eter measuring by how much bidders violate the activity rules. Importantly, such

bidding behavior violates the rules of the CCA (see Figure 1 for more detail).

In contrast, the focus of our paper is on how bidders behave in the clock phase

so that they are able, within the rules of the CCA, to weaken the constraints of

the activity rule and submit spiteful supplementary bids. We show that this is

not innocuous as our results are qualitatively and quantitatively different from

the findings of Levin and Skrzypacz (2016). First, where Levin and Skrzypacz

(2016) conclude that equilibria are inefficient, we show that efficient equilibria

can exist if the uncertainty concerning bidders’ types is not too large. In any

efficient equilibrium, bidders endogenously relax the constraints of the activity

rule through demand expansion in the clock phase. In this way, the clock does not

perfectly reveal bidders’ types and may end with excess supply so that the last

clock round does not fix the final allocation. In the supplementary phase, bidders

then have a strong incentive to bid true marginal values on possible final shares.

Second, where we observe inefficient equilibria for large uncertainty, the source

of inefficiency is very different from that in Levin and Skrzypacz (2016). Where

in Levin and Skrzypacz (2016) the source of inefficiency is the best response to

exogenously distorted marginal prices, the inefficiency in our model derives from

the incentives of strong bidders to obfuscate their types (as in the literature on the

ratchet effect in the dynamic principal-agent literature) to avoid being exploited

in the supplementary round.

While we consider the interaction between the clock and the supplementary

phase, Janssen and Karamychev (2016) only focus on the supplementary phase of

the CCA. Assuming a particular clock phase behavior, they show how the supple-

mentary phase can be solved using iterative elimination of dominated strategies,

resulting in bidders raising rivals’ costs without running the risk of winning un-

desired packages. The current paper analyzes the equilibrium properties of both

stages of the CCA, i.e., the entire game.

A variant of the CCA has first been suggested by Ausubel et al. (2006) and

further developed in Cramton (2013). Ausubel and Baranov (2014) discuss the

evolution of the CCA. Gretschko et al. (2017) discuss why bidding can be compli-

cated in a CCA. Bichler et al. (2013) report experimental evidence on the CCA

and present a simple example in which one bidder submits a spiteful bid.

The rest of this paper is organized as follows. Section 2 describes the auction
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rules and the model. Section 3 proves our first main result that there do not exist

efficient equilibria of the CCA where the clock phase fully reveals rivals’ types.

Section 4 presents our second main result, namely that if the uncertainty con-

cerning the competitor’s type is large, the CCA does not have efficient equilibria.

Both sections present general propositions and illustrate the main results through

examples of equilibria. The examples also show that the non-existence of equilib-

ria satisfying certain properties is not due to a general non-existence of equilibria.

Section 5 analyzes the VCG mechanism as a benchmark. We show that under

standard preferences, iterated elimination of weakly dominated strategies always

results in an efficient outcome, but it leaves the bids of weak types on large shares

undetermined. Lexicographic preferences impose that these bids are chosen to

raise rival’s costs. Section 6 concludes with a discussion where we also consider

the relevance of our paper for interpreting real-world auctions. Most proofs are in

the appendix.

2 Auction Rules and the Model

We consider auctions where two bidders compete to get a share xi ∈ [0, 1] of a

unit of a divisible good. Throughout the paper, when a bidder has label i = 1, 2,

the other bidder’s label is j = 3 − i. As the VCG auction is an important part

of the CCA, we first describe the rules of the VCG auction before we go into the

details of the CCA. After presenting the auction rules, we describe our assumptions

regarding each bidder’s preferences.

VCG Rules. In the VCG auction, all bidders simultaneously submit their bids

for all shares, that is, bidder i submits a bidding function Si : [0, 1]→ R+. Bidders

cannot bid a positive amount on getting nothing, i.e., Si(0) = 0. Subsequently, the

auctioneer chooses the allocation x = (x1, x2) that maximizes the sum of bids, i.e.,

x ∈ arg maxx S1(x1) + S2(x2) such that x1 + x2 ≤ 1 and xi ≥ 0 for i = 1, 2. If two

or more allocations solve the maximization problem, the auctioneer implements

the allocation which minimizes the distance to the allocation (1/2, 1/2).

Bidder i receives share xi and pays the VCG price maxy Sj(y) − Sj(xj), i.e.,

the opportunity cost he (reportedly) imposes on the other bidder. When there

is no possibility of confusion, we sometimes drop subscripts. Hence, with strictly

increasing bidding functions, the final allocation is (x, 1− x) and bidder i has to

pay Sj(1)−Sj(1−x). Throughout the paper, we will use the bid on the full supply

to raise rival’s costs.
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CCA Rules. The CCA is an auction with two stages. In the first stage, the

clock phase, the auctioneer successively increases the price of the good and bidders

report demands. The second, supplementary stage is a VCG auction where, in

addition to the rules specified above, the bids are subject to so-called activity

rules that are described below. Put differently, the clock phase elicits a demand

function, whereas in the supplementary phase bidders submit an inverse demand

function. Activity rules aim for the consistency of the two functions. As explained

in the introduction, the rationale of the clock phase is price and package discovery,

while VCG pricing should incentivize truthful bidding (Cramton, 2013). The

supplementary phase is meant to avoid some units remaining unsold and to allow

bidders to express their preferences better.

At each point of time in the clock phase, the auctioneer announces a price and

bidders report the share they demand at current prices. If aggregate demand is

larger than supply, the price is increased. The clock ends as soon as there is no

excess demand so that the clock can end with market clearing or excess supply.

Importantly, bidders are not allowed to increase their demand during the clock

phase. We model this in the following way. The clock phase begins at an initial

price p0 = 0. The clock price is increased continuously as long as there is excess

demand. Bidder i’s action in the clock phase is a weakly decreasing demand

function xi : R+ → [0, 1] that maps prices to demand. The clock phase stops at p̃

if excess demand is smaller than or equal to zero, i.e., if x1(p̃) + x2(p̃) ≤ 1.

In the main part of the paper, we analyze a CCA where bidders do not receive

any information concerning aggregate demand in the clock phase.7 Hence, each

bidder can only condition their demand on the price, but not on their rival’s

previous demand. This assumption facilitates the formal analysis of the auction.

We also comment, however, on an information policy where the last clock round

demands are announced. At the end of Section 4, we present an example of an

inefficient equilibrium under this information policy.

In the supplementary phase, bidders can submit bids on all possible shares,

that is, they submit bidding functions Si : [0, 1]→ R+. Given the supplementary

7Real world CCAs have used different regimes concerning information disclosure in the clock
phase. In one regime, bidders are only informed about the fact that there is still excess demand
and that the clock phase continues. In another regime, bidders are informed about aggregate
demand in every clock round. The first regime was used in the first part of the Austrian auction
and seems to be favored if collusion between bidders might be an issue.

In the consultation document on the award of the 2.3 GHz and 3.4 GHz bands, Ofcom (2014)
proposed using either the CCA or the SAA without demand disclosure. In a reaction for Hutchin-
son 3G, Power Auctions LLC (2015) claims that a dynamic auction with no demand disclosure
is basically a sealed-bid auction. We show, however, that even without demand disclosure the
equilibrium outcomes that can be sustained in a CCA differ from the outcomes of the VCG.
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bids, the auctioneer uses the same rules as described above for the VCG mechanism

to compute the final allocation and individual CCA prices.8

Importantly, the CCA has activity rules linking the clock and the supple-

mentary phase by translating the clock demand behavior into constraints on the

supplemental bids. More specifically, the supplementary bidding function Si must

satisfy three types of constraint. First, clock bids remain valid, i.e., if bidder i

demanded x at clock price p, then it has to be the case that Si(x) ≥ p · x. Unlike

for all other bids, there are no further constraints for the bid on the final clock

round demand. Second, the so-called final cap rule requires that supplementary

bids satisfy the axiom of revealed preference with respect to the final clock round

demand, i.e., Si(x) ≤ Si(x̃i) + p̃(x − x̃i), x 6= x̃i, where p̃ is the final clock round

price and x̃i is bidder i’s demand in the final clock round. Finally, the relative cap

requires that if in the clock phase bidder i demanded x at a price p, then for any

x′ > x, bidder i cannot express an incremental bid for x′ in the supplementary

round that is larger than p, i.e., Si(x
′) ≤ Si(x) + p(x′− x). A bid on x′ cannot be

larger than the area under the expressed clock demand curve.9

The intuitive rationale behind these three activity rules is as follows. The

first rule requiring that clock bids remain valid is a minimal requirement to make

clock bids meaningful. The final cap rule guarantees that if the clock ends with

market clearing, the final clock allocation is the final allocation. As bidders do

not know in advance when is the last clock round, this rule encourages bidders

to bid truthfully in the clock.10 Finally, the relative cap rule motivates bidders

when choosing between two different packages to bid according to their relative

preference evaluated at the current round prices. Because of the second price

rule, it was considered that bidders have an incentive to bid value on all possible

packages in the supplementary round. The final and relative cap are such that by

bidding truthfully in the clock, bidders can bid value in the supplementary phase.

Preferences and Information. The utility a bidder derives from acquiring a

share x is denoted by U(x, θi), where θi is bidder i’s privately known type. A

bidder’s type is randomly drawn from an atom-less and commonly known dis-

tribution with support [θ, θ]. The set of type profiles θ = (θ1, θ2) is denoted by

[θ, θ]2. The utility function U(x, θi) is strictly increasing in θi and x, twice continu-

8We do not consider the ‘core-selecting’ elements in the pricing rule of real-world CCAs (see,
e.g., Day and Milgrom (2008), Day and Cramton (2012), and Erdil and Klemperer (2010), as
well as Goeree and Lien (2016) and Ausubel and Baranov (2013)).

9Levin and Skrzypacz (2016) provide a figure illustrating the activity rules.
10Below, we formally define what it means to bid truthfully in the clock.
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Figure 1: Clock demand and constraints of the activity rules

ously differentiable, and concave in x. The marginal utility is increasing in θi, i.e.,

∂2U(x, θi)/∂θi∂x > 0 for x > 0 and non-negative for x = 0. When convenient, we

write Ui(x) instead of U(x, θi). We use S(x, θi) to denote a bidder’s bid on quan-

tity x when he is of type θi. Throughout the paper, we denote utility and bidding

functions with capital letters and the respective derivatives with small letters. For

example, we write Ui for the utility function and ui for marginal utility. Also,

U = U(·, θ) denotes the utility function of the weakest possible bidder.

We can now formally define what truthful bidding in the clock means. A

bidder bids truthfully at clock price p if the demanded share xi(p) is such that

ui(xi(p)) = p. We will say that a bidder expands demand in the clock phase if

there are clock prices such that the bidder demands an amount xi with ui(xi) < p.

As marginal utilities are decreasing in xi, it is clear that this inequality can only

hold if bidders demand more than their truthful demand. A bidder reduces demand

at clock price p if ui(xi(p)) > p.

Figure 1 illustrates an important aspect of the activity rules. In the left panel,

a bidder has continuously decreased his demand in the clock phase until the clock

stops at price p̃ where he demands x̃. Given this clock behavior, the shaded area

under the demand curve represents the maximal amount bidder i can bid in the

supplementary round on the full supply relative to his supplementary bid on x̃.

As we will show in more detail in the next section, this area is essential in under-

standing the extent to which a bidder can raise their rival’s costs. Now suppose,

as represented in the right panel, that the bidder continues bidding on the full

supply until price p̃ and then drops the demand to x̃. In this case, the size of the

shaded area is larger, namely p̃(1 − x̃), so that the bidder potentially is able to

raise their rival’s costs further. As explained in the introduction, in their third

model, Levin and Skrzypacz (2016) do not take these constraints of the activity

rules into account and assume that bidders use linear bid strategies (as in the left
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panel), but can raise their rival’s costs in the supplementary round as if their clock

behavior is as in the right panel.

Bidders use the information about the clock development to update their beliefs

about the type of the rival bidder. Even though no information about demand

is revealed, bidders can infer information about their competitor’s type from the

equilibrium strategies and the duration of the clock phase. We denote by Θ the

support of the posterior of the other bidder’s type distribution. In a pooling

equilibrium, a bidder does not learn anything about the other bidder’s type, so

Θ = [θ, θ]. On the contrary, the equilibrium might be separating so that the final

clock price reveals the rival’s type. The posterior in such an equilibrium is then

the singleton Θ = {θj}. The set Θ(p) denotes the support of the posterior if the

clock ends at price p.

Besides the standard preferences, bidders have a spite motive. We model this

spite motive in a lexicographic way. In the first dimension, each bidder will maxi-

mize their surplus from the auction, and in the second dimension, they maximize

the payment of the other bidder. We sometimes refer to the (standard) expected

utility of the first dimension as the primary utility. The spite motive is relatively

weak since bidders do not want to harm the other bidder if this implies getting a

lower surplus themselves.

For the VCG auction, we define the preference for raising the rival’s costs as

follows. Given the other bidder’s strategy Sj, bidder i strictly prefers strategy Ŝi

over strategy Si, if and only if Ŝi yields a strictly higher primary expected utility

than Si, or the primary expected utility is the same and Ŝi leads to a weakly higher

VCG price for bidder j for all θj ∈ [θ, θ] and to a strictly higher VCG price for

a least one θj ∈ [θ, θ]. More formally, let x̂(θ) be the allocation implemented by

(Ŝi, Sj) and let x(θ) be the allocation implemented by the strategy profile (Si, Sj).

The strategy Ŝi is preferred to Si in the spite dimension if

max
y
Ŝi(y)− Ŝi(x̂i(θ)) ≥ max

y
Si(y)− Si(xi(θ))

for all θj ∈ [θ, θ] with a strict inequality for a least one θj ∈ [θ, θ].

For the CCA, the definition of raising the rival’s costs has to be slightly adapted

as follows. First, in the CCA, a strategy consists of a clock demand function xi and

a supplementary bidding function Spi for every possible final clock price p. Accord-

ingly, the VCG strategy Si has to be replaced by the CCA strategy (xi, {Spi }p).
Second, the dynamic nature of the CCA needs to be taken into account. A strat-

egy (x̂i, {Ŝpi }p) is then weakly preferred to another strategy (xi, {Spi }p) if for any
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history of the clock phase the continuation strategy is weakly preferred. Condi-

tional on the clock price p̃ being reached, the difference with the VCG mechanism

is that we use the posterior Θ(p̃) rather than the prior belief [θ, θ] to evaluate

a bidder’s preference. This means that if the clock ended at price p̃, the sup-

plementary bidding function Ŝ p̃i is weakly preferred to S p̃i . When the clock has

not ended at price p̃, then the evaluation of whether the continuation strategy

(x̂i|p≥p̃, {Ŝpi }p≥p̃) is weakly preferred to (xi|p≥p̃, {Spi }p≥p̃) again uses the posterior

Θ(p̃) and not the prior.

Efficiency and Equilibrium. For every type profile θ, we define the efficient

allocation x∗ = (x∗1, x
∗
2) as x∗(θ) ∈ arg maxx U(x1, θ1) + U(x2, θ2) such that x1 +

x2 ≤ 1 and xi ≥ 0 for i = 1, 2.

A few results are immediate. Since the utility functions are strictly increas-

ing and concave, there exists a unique efficient allocation, which may involve one

bidder not getting anything. As the objective function of the constrained max-

imization problem is supermodular in (xi, θi), Topkis’s Monotonicity Theorem

implies that bidder i’s efficient share x∗i (θi, θj) is non-decreasing in θi, and hence,

it is non-increasing in θj. It follows that for each type θi there exists a lowest pos-

sible efficient share minθj x
∗
i (θi, θj) = x∗i (θi, θ) = xi, and a largest possible efficient

share maxθj x
∗
i (θi, θj) = x∗i (θi, θ) = xi. Concavity of U implies that the allocation

(1/2, 1/2) is efficient for any symmetric type profile. As a consequence, for types

θ < θi < θ we have that xi < 1/2 < xi. In any efficient allocation, the lowest type

will never win more than 1/2, while the strongest type θ will not win less than 1/2.

Berge’s Maximum Theorem implies that x∗(θ) is continuous in θ. Hence, for any

x ∈ [xi, xi] there exists a type θj such that (x, 1−x) = x∗(θ). Finally, we note that

u(x(θi), θi) is non-decreasing in θi.
11 The value function of the maximization prob-

lem defining the efficient allocation is V (θ) = U1(x
∗
1)+U2(x

∗
2). It is non-decreasing

in θi for all i, since by the envelope theorem, ∂V (θ)/∂θi = ∂U(x∗i , θi)/∂θi ≥ 0. We

denote the minimal value of the efficient allocation when bidder i has type θi by

Vi(θ) = V (θi, θ).

We consider weakly clock-monotone equilibria, i.e., equilibria where θi ≥ θj ⇒
xi(p) ≥ xj(p). Our equilibrium concept is a refinement of the ex-post equilibrium

applied to the first dimension of the preferences. We only consider ex-post equi-

11This can be seen as follows. Let θ′i > θi, so x′i ≥ xi. Suppose x′i = xi = 1. Then clearly
u(1, θ′i) > u(1, θi). If x′i = 1, but xi < 1, then u(1, θ′i) ≥ u(0, θ) ≥ u(1 − xi, θ) = u(xi, θi),
by decreasing marginal values and necessary conditions of efficiency. If 1 > x′i, then efficiency
requires u(xi, θi) = u(1 − xi, θ) and u(x′i, θ

′
i) = u(1 − x′i, θ). Since 1 − xi ≥ 1 − x′i, decreasing

marginal values imply u(1− xi, θ) ≤ u(1− x′i, θ).
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libria that are such that given the prior beliefs and the strategies of the others no

bidder prefers to use a different strategy as defined above, including the preference

for raising their rival’s costs. We cannot use the notion of ex-post equilibrium us-

ing the full preferences, as in equilibrium we must allow for the fact that knowing

the type of the competitor ex-post, a bidder may want to change the rival’s cost

by raising bids.

Quadratic Utility Model. Levin and Skrzypacz (2016) consider a particular

instance of our model, where bidders have a strictly increasing quadratic utility

function of the form

U(x, θi) = θix−
σ

2
x2,

with θ ≥ σ > 0 and x ∈ [0, 1]. The condition θ ≥ σ makes the utility function

increasing in x for all types. Levin and Skrzypacz (2016) adopt the assumption

that θ − θ < σ, which guarantees that the efficient allocation is always in the

interior of [0, 1] as ui(0) > uj(1), j 6= i. The efficient share of bidder i is then

x∗i (θi, θj) =
θi − θj + σ

2σ
.

We use the quadratic utility function in our examples. Note that in our general

set-up we do not assume that the efficient allocation is always in the interior.

3 Efficiency and Information Revelation

This section presents the fundamental trade-off between efficiency and information

revelation. Figure 1 has shown how bidders can expand demand in the clock phase

to relax the constraints imposed by the activity rule to raise their rival’s cost in the

supplementary round. Whether or not a bidder wants to fully use the potential

to raise the bid on the full supply, depends on his knowledge of the competitor’s

type. Bidding high on the full supply can be risky if one does not know how strong

the competitor is. Learning the competitor’s type allows a bidder to increase their

rival’s CCA price by allowing the bidder to target more precisely the amount by

which he can raise the bid on the full supply without acquiring it.

Knowing how bidders can relax the constraints imposed by the activity rule

to be able to raise their rival’s cost in the supplementary round, we now consider

how this ability eliminates the possibility of fully revealing efficient equilibria, i.e.,

equilibria where at the end of the clock phase bidders know the type of their

competitor. Full revelation requires that the clock phase bidding strategies are
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separating. Truthful bidding is an example of a separating clock phase bidding

strategy.

The impossibility of having fully revealing efficient equilibria can be explained

along the following lines. First, full revelation and efficiency together require

that on all possibly efficient shares [xi, xi] all bidders must bid truthfully in the

clock phase and the clock phase ends with market clearing. Thus, for all prices

p ∈ [ui(xi), ui(xi)] demand should be such that ui(xi) = p. For any other fully

revealing clock bidding strategy, at least some types cannot express their true

marginal utility in the auction. Second, market clearing in the final clock round

implies that the final clock round demands are equal to the final allocation. The

supplementary round bids then only determine the price the competitor has to

pay. Third, given such a fully revealing strategy of their competitor, weak types

have an incentive to deviate and expand demand at least until the clock price is

in the interior of this interval and then drop demand discontinuously and demand

truthfully from then on. This deviating strategy is illustrated in Figure 2, where

in the left panel truthful demand is given by the solid line over the interval p ∈
[ui(xi), ui(xi)] and the dashed line indicates that outside this interval demand can

be anything as long as it is (weakly) decreasing. The middle panel of Figure

2 depicts the deviation strategy that is considered, where the bidder expands

demand for prices p ∈ [ui(xi), p
′) for some p′ ∈ (ui(xi), ui(xi)] and bids truthfully

for all p ∈ [p′, ui(xi)]. Note that the non-deviating bidder does not notice the

deviation as p′ is on the equilibrium path so that after the clock stops at p′ he

simply believes that the rival is of a stronger type.

To see that this deviation is beneficial, two cases should be distinguished.

First, suppose that the competitor is of a relatively strong type and that under

truthful bidding the clock phase would stop at a price p ∈ [p′, ui(xi)]. In this case,

the deviation goes unnoticed by the competitor, the final clock price would remain

unchanged and the clock ends with market clearing. However, the deviation weak-

ens the constraints imposed by the activity rules and allows the deviating bidder

to raise their rival’s costs beyond what would be possible if he had not deviated.

Second, suppose that the competitor is of a relatively weak type and that under

truthful bidding the clock phase would stop at a price p ∈ [ui(xi), p
′). In this case,

after expanding demand, the clock phase immediately stops at price p′ with ex-

cess supply. The competitor (mistakenly) infers from the final clock price p′ that

the deviating bidder is a stronger type than his true type. The deviating bidder

can ‘correct’ their deviation in the supplementary round by generating ‘missing’

truthful bids in the interval (xi(p
′), xi]. This is illustrated in the right panel of Fig-
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Clock Demand for p ∈ [ui(xi), ui(xi)] (Possible) Clock Dem. for p /∈ [ui(xi), ui(xi)]

Marginal Supp. Bids for x ∈ [xi(p
′), xi] Relative Cap for x ∈ (xi(p

′), xi]: si(x) ≤ p′

(a) Truthful bidding
for p ∈ [ui(xi), ui(xi)]

x

pui(xi) ui(xi)

xi

xi

(b) Demand expansion
for p ∈ [ui(xi), p

′)

x

pui(xi) p′ ui(xi)

xi

xi(p
′)

xi

(c) Marginal supplementary
bids when clock phase ends

at p′ after demand expansion

x

si(x)ui(xi) p′ ui(xi)

xi

xi

xi(p
′)

Figure 2: Profitable demand expansion given truthful bidding

ure 2, where marginal supplementary bids of the deviating bidder are depicted.

The bidder bids true marginal utilities over the whole interval of possibly efficient

shares (xi(p
′), xi] (depicted by the dot-dashed line segment). The dotted line rep-

resents the constraints of the relative cap, which require that the solid line is to

the left of the dotted line. This supplementary demand where bidder j bids true

marginal values is consistent with all activity rules. Hence, the same allocation

is implemented as under truthful bidding and the deviating bidder pays the same

price. Thus, the bidder is better off against some types and not worse off against

other types, making the deviation beneficial.

The following proposition states the result formally and the proof explains

the argument in more (technical) detail. We use the function τ : [θ, θ]2 → R+

to analyze equilibrium information revelation. The function assigns, for a given

equilibrium, to every type profile the final equilibrium clock price, i.e., τ(θ) =

inf{p : x1(p) + x2(p) ≤ 1}. If no information is revealed during the clock phase

and the clock ends at the same price for all type profiles, there exists a price p

such that τ(θ) = {p} for all type profiles θ ∈ [θ, θ]2. We call this a clock-pooling

equilibrium. At the other extreme case is a clock-separating equilibrium, which is

defined as an equilibrium where the function τ(θ) is non-decreasing in θi for all i

and strictly increasing in θj for all bidders j who win a share xj < 1.12

12The restriction xj < 1 is needed for the following reason. Suppose [θ, θ] is such that a
bidder i with type θ wins 0 in the efficient allocation if bidder j’s type is sufficiently close to θ.
In this case, the clock phase would stop at the same clock price for all bidders j who win the
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Proposition 1. There does not exist an efficient clock-separating equilibrium in

the CCA.

An immediate implication of the proposition is that truthful bidding is not

an equilibrium. In addition, if one interprets a clock-separating equilibrium as

a formal definition of the more informal notion of ‘price and package discovery,’

mentioned in the introduction (e.g., Ausubel et al., 2006), then it follows that

under a weak preference for raising a rival’s costs, the CCA cannot deliver its two

main objectives simultaneously: efficiency and price and package discovery.

The result is akin to the ratchet effect in the dynamic contracting literature

(Laffont and Tirole, 1988). In this literature, high types do not want to reveal

their type in the first period, because they would end up with a worse contract

in the second period if their type is revealed. In the CCA, the driving forces are

similar. Suppose a low type observes that the clock has not ended yet, indicating

that the other bidder has a high type. A low type can use this information to raise

the high type’s CCA price if the constraints of the activity rule are not binding,

which is the case if the low type has expanded demand for a sufficiently long

period. Higher types will then best respond by pooling with lower types in order

to obfuscate their type.

We will now argue that Proposition 1 continues to hold if, in the supplementary

phase, bidders are informed about the final clock round (individual or aggregate)

demand. The proof of Proposition 1 shows that, in an efficient and fully revealing

equilibrium, bidders must bid according to true marginal values for clock prices

p ∈ [ui(xi), ui(xi)] and the clock will end with market clearing. This argument

is independent of the information policy. The difference between whether or not

bidders are informed about the demand in the final clock round is that without

demand disclosure a deviation to further demand expansion will not be noticed by

the non-deviating bidder, whereas with demand disclosure, the deviation will be

detected when the clock ends with excess supply. To understand that Proposition

1 continues to hold with demand disclosure, it is important to realize that the

non-deviating bidder only learns about the deviation when the clock phase ends,

so his supplementary bids are constrained by the relative cap in the same way

as without demand disclosure. It then suffices to show that there are deviations

in the clock phase such that the non-deviating bidder has to bid true marginal

values on relevant shares in the supplementary round after the clock ends with

excess supply. In this case, the deviating bidder can ‘correct’ his clock bids in

full supply.
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the supplementary phase and as the non-deviating bidder cannot further raise his

rival’s cost given his clock demand, the deviating bidder is able to implement the

same allocation but raising his rival’s cost.

To finish the argument, we will now show that there are (out-of-equilibrium)

clock phase endings with excess supply where the non-deviating bidder j must

bid true marginal values in the supplementary phase. Consider the clock ending

at p̃ = uj(xj) + ε with excess supply, and supplementary bids on [xj(p̃), xj] with

xj(p̃) being type j’s truthful demand at p̃, i.e., p̃ = uj(xj(p̃)). To have a fully

revealing, efficient ex-post equilibrium, the following strategy for all types θi with

1−xj ≤ x∗(θi, θj) < 1−xj(p̃) must not be a profitable deviation: in the clock phase,

demand 1 for prices less than p̃ and demand x∗(θi, θj) at p̃ and in the subsequent

supplementary phase only bid on the efficient share and the full supply. It is clear

that after such a deviation, the efficient allocation is implemented. To make this

a non-profitable deviation, it should be the case that bidder i pays a price that is

not smaller than the price he has to pay after the clock ends with market clearing

and truthful bidding. Note, however, that the post-deviation CCA price cannot

be higher as bidder j already fully raises the CCA price on the equilibrium path.

Bidder j must therefore bid true marginal values on [xj(p̃), xj] when the clock ends

with excess supply at p̃ with demands (x∗i , x̃j). Consequently, as in the proof of

Proposition 1, bidder i can demand 1 for prices less than p̃ and demand truthfully

at p̃, where truthful demand xi(p̃) < x∗(θi, θj), and bid true marginal values in the

subsequent supplementary phase. The deviation increases the rival’s cost without

affecting the allocation and his own payment.

The next proposition states a property of any efficient equilibrium, namely that

the clock cannot stop at very low prices, and that weak bidders expand demand

at some stage of the clock phase. In combination with the next subsection where

we construct an efficient equilibrium, this proposition is of interest as it shows

that, in contrast to Levin and Skrzypacz (2016), bidders do not necessarily want

to reduce demand in the face of a competitor with a spite motive. The example

of an efficient equilibrium also shows that the fact that efficient clock-separating

equilibria do not exist in either information regime does not mean that efficient

equilibria do not exist in general.

Proposition 2. In any efficient equilibrium, a bidder will not demand x̂i ≤ xi at

prices p < min{u(1, θ), ui(x̂i)}. The smallest final clock price p̃ is strictly larger

than min{u(1, θ), u(1/2, θ)} and some types expand demand for some prices p < p̃.
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The argument is as follows. Suppose to the contrary that in an efficient equilib-

rium, bidder i demands x̂i ≤ xi at clock price p < min{u(1, θ), ui(x̂i)}. We distin-

guish two cases. First, suppose x̂i is possibly an efficient share, i.e., xi ≤ x̂i ≤ xi.

Efficiency of equilibrium requires that bidders bid true marginal values on possible

efficient shares. But this is not feasible for bidder i, as, independent of whether

the clock ends at p or continues, the relative cap imposes that the supplementary

bids for x̂i must satisfy si(x̂i) ≤ p < ui(x̂i). Hence, in an efficient equilibrium

where bidders reduce demand at these low prices, it must be that x̂i < xi.

Second, we argue that, in an ex-post equilibrium, the highest types do not

want to implement the efficient allocation if their competitor reduces demand to

x̂i < xi. Consider bidder j with type θj = θ. In an efficient ex-post equilibrium,

in the supplementary phase in which bidders i and j meet, bidder j must prefer

winning the efficient share x∗j over 1− x̂i, i.e.,

Uj(1− x̂i)−max
y
Si(y) + Si(x̂i) ≤ Uj(1− x∗i )−max

y
Si(y) + Si(x

∗
i ).

As x∗i > x̂i, the relative cap implies that Si(x
∗
i ) ≤ Si(x̂i) + p(1− x∗j − x̂i) so that

the above inequality implies

Uj(1− x̂i)− Uj(x∗j) ≤ p(1− x̂i − x∗j).

However, as p ≤ u(1, θ), this inequality cannot hold, i.e., the strongest types of

bidder j strictly prefer winning 1− x̂i over the efficient share.

Given this argument and the impossibility of fully revealing equilibria, it is

clear that the clock cannot stop at a price p̃ ≤ min{u(1, θ), u(1/2, θ)}. As at least

one bidder must demand less than 1/2 for the clock to end, it is clear that at these

relatively low clock prices this bidder reduces demand and to a quantity smaller

than xi, which we have just shown is not possible in an efficient equilibrium. It

is then also easy to see that some bidders would want to expand demand at some

prices p ≤ p̃. Doing so, while keeping fixed the rest of the clock phase bidding,

allows the bidder to raise the rival’s cost in the supplementary round in a way

that does not risk winning these bids, as explained above.

3.1 Efficient Equilibria in the Quadratic Utility Model

Proposition 1 rules out fully revealing efficient equilibria. In this subsection, we

present an example where bidders have quadratic utility functions. The example

shows that (i) equilibria exist, (ii) equilibria can be efficient, and (iii) what equi-
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libria with demand expansion in the first phase of the clock may look like. Thus,

the previous propositions have economic content and are not due to a lack of equi-

librium existence. The example is also useful to understand the main intuition

behind the second main result presented in the next section.

The equilibrium is clock semi-separating as the bidding in the clock phase might

reveal some information about the rival’s type. Both bidders expand demand by

bidding on the full supply until a threshold clock price p̃ > u(1/2, θ). At prices

larger than the threshold price, bidders bid truthfully. In accordance with the

previous propositions, as p̃ > u(1/2, θ) and bidders bid truthfully for prices p ≥ p̃

there are (at least) some low types for which there is pooling behavior in the clock

phase. The threshold price plays a crucial role in the equilibrium construction,

and we will identify constraints on it for this type of equilibrium to exist.

Clock Behavior. As bidders have quadratic utility functions, the above de-

scribed clock behavior with extreme demand expansion at prices p < p̃ and bidding

according to true marginal values for p ≥ p̃ gives the following clock demand:

xi(p) =

1 if p < p̃

max
{
θi−p
σ
, 0
}

if p ≥ p̃.
(1)

Figure 3 illustrates the two possible ways in which the clock can end in equi-

librium: either (i) the clock ends with excess supply at p̃ or (ii) with market

clearing at p∗ > p̃. The figure shows bidder 1’s clock demand function (the dashed

line) and 1−x2(p), the residual supply function faced by bidder 1 (the solid line).

The dotted shaded (line shaded) area between the two curves at price p indicates

excess demand (supply). In the two plots, bidder 1’s demand is the same. Bidder

2’s type determines whether the left or the right figure applies to the clock phase.

If bidder 2’s type is sufficiently low, aggregate demand at p̃ is smaller than the

available supply (Fig. 3a). Conversely, when bidder 2’s type is high, there may

be excess demand at p̃ (Fig. 3b). Clearly, we must have p̃ < θ − σ/2 so that the

highest types demand more than half of the supply at p̃. At p > p̃ bidders bid

truthfully and the clock eventually ends with market clearing at p∗ > p̃.

Bidders update their prior about the other bidder as the clock proceeds. Figure

4 summarizes the information revelation during the course of the clock phase. The

square depicts all possible type profiles. The clock ends at p̃ for type profiles in the

gray area, i.e., if θi+θj ≤ 2p̃+σ. Hence, bidder i with type θi infers from the clock

ending at p̃ that j’s type is at most 2p̃+σ−θi, i.e., Θ(p̃) = [θ, 2p̃+σ−θi]. If the types
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x1(p) 1− x2(p) x1(p) + x2(p) > 1 x1(p) + x2(p) < 1

0

1
x

pp̃

(a) Clock ends at p̃

0

1
x

pp̃ p∗

(b) Clock ends at p∗ > p̃

Figure 3: Clock behavior in the semi-separating equilibrium

θj = 2 · p̃+ σ − θi
θj = 2 · p+ σ − θi

θi

θj

θ θ
θ

θ

Θ(p̃)

Θ(p)

θi

Figure 4: Information revelation in the semi-separating equilibrium for p̃ = (θ +
θ − σ)/2

are such that the clock does not stop at p̃, the parallel diagonal lines reflect the

combination of types for which the clock ends at p > p̃. For each such p, the clock

ends with market clearing for types (θi, θj) such that (θi − p)/σ + (θj − p)/σ = 1,

yielding the lines θj = 2p + σ − θi. As the clock proceeds, the diagonal line in

Figure 4 shifts to the north-east. If the clock does not stop at p̃, bidder i knows

that at any p > p̃ the lowest possible type of the other bidder is 2p + σ − θi.

Observing the final clock price p∗, each type θi correctly infers the rival’s type

Θ(p∗) = {2p∗ + σ − θi} in the candidate equilibrium.

Supplementary Bids. The supplementary bidding functions depend on whether

the clock ends at p̃ or at p∗. If the clock ends at p̃, bidder i bids in the supple-
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mentary phase according to

S p̃i (x) =


0 for x < x̃i

Ui(x) for x̃i ≤ x < 1

min{Ui(xi) + U(1− xi), Ui(x̃i) + p̃(1− x̃i)} for x = 1,

(2)

where x̃i is bidder i’s truthful demand at p̃.13 Each bidder bids true utility on

shares that might be obtained given the clock behavior and submit a spiteful bid

on 1, which will be discussed below. If the clock ends at p∗ > p̃, bidder i uses the

bidding function

Sp
∗

i (x) =


Ui(x) for x ≤ x̃i

Ui(x̃i) for x̃i < x < 1

Ui(x̃i) + p̃(1− x̃i) for x = 1.

(3)

One difference between the two bidding functions is that bidder i bids true marginal

values on (efficient) shares higher than x̃i after p̃, but not after p∗. We will see

below that this difference prevents j from further expanding demand in the clock

phase. Another difference is, as explained below, the bid on the full supply.

It is straightforward to check that the supplementary bidding functions im-

plement the efficient allocation and that they satisfy the activity rules given the

stipulated clock behavior.

We will now argue that these supplementary bidding functions are optimal from

the perspective of raising the rival’s cost in that bidders want to raise their rival’s

cost as much as possible without running the risk of winning a bid inadvertently.

Whatever bidders bid on their last clock round share in the supplementary round,

the relative cap implies they can maximally bid p̃(1− x̃i) more on the full supply

if the clock ends at p∗ or p̃. However, when the clock phase ends at p̃ and their

bid on the entire supply is more than Si(xi) − Si(x̃i) + S(1 − xi) higher than

their bid on x̃i, they run the risk of winning the full supply if the rival bidder’s

type is low. In the candidate equilibrium, this means that bidders do not want

to bid more than Ui(xi) + U(1 − xi) on the full supply. As a result, when the

clock ends at p̃, bidders bid Si(1) = min{Ui(xi) + U(1 − xi), Ui(x̃i) + p̃(1 − x̃i)}.
Now we consider the clock ending at p∗ > p̃. Observing the clock ended at p∗,

bidders update their belief about the rival bidder’s type and believe that the clock

ended with market clearing. Due to the final cap rule, bidders believe that the

13Bidding 0 on shares x < x̃i simplifies the proof that no bidder has an incentive to deviate.
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Ui(xi) + U(1− xi)
Ui(x̃i) + p̃(1− x̃i)

Figure 5: Constraints on the supplementary bid for the full supply

final clock allocation is also the final allocation and maximally raise their bid on

the full supply, i.e., for x ∈ [xi(p
∗), x̃i] the relative cap si(x) ≤ ui(x) holds with

equality and Si(1) = Si(x̃i) + p̃(1− x̃i).
For later reference, it is useful to consider how Ui(xi) +U(1−xi) and Ui(x̃i) +

p̃(1 − x̃i) depend on a bidder’s type. Both expressions are represented in Figure

5. It turns out that there is a cutoff type

θ̂(p̃) = p̃(2 +
√

2)− θ(1 +
√

2) + σ (4)

such that Ui(xi) + U(1− xi) < Ui(x̃i) + p̃(1− x̃i) if, and only if, θi < θ̂(p̃).14 As a

result, (only) bidders with a low type bid S p̃i (1) = Ui(xi) + U(1− xi).

Equilibrium Constraints on Clock Behavior. We will now determine the

restrictions on p̃ such that no bidder has an incentive to deviate in the clock phase.

First, bidders should acquire positive utility from bidding. As the minimal value

of the efficient allocation is attained if both bidders are of the lowest possible type,

it is sufficient to require that U(1/2) ≥ p̃/2, which is equivalent to θ − σ/4 ≥ p̃.

Second, it should not be the case that bidder i wants to reduce their demand in

the clock phase to prevent rival j from raising the price i has to pay if j successively

learns bidder i’s type. To this end, define θ̃(p̃) = 2p̃+σ− θ to be the highest type

for which the clock always ends at p̃. Suppose now that θ̂(p̃) > max{θ, θ̃(p̃)} so that

there exists a type θj ∈ [θ̃(p̃), θ̂(p̃)) for which the clock phase does not necessarily

stop at p̃ and their bid on the full supply is contingent on the final clock price.

If the clock stops at p̃ they bid Uj(xj) + U(1 − xj) as they do not want to risk

14Formally, the equation Ui(xi) + U(1 − xi) = Ui(x̃i) + p̃(1 − x̃i) has a second root θ̂2(p̃) =
p̃(2−

√
2) + σ− θ(1−

√
2). As in all equilibria we consider, we have that p̃ ≥ min(θ− σ

2 , θ−
σ
4 ),

so it is easy to see that θ̂2(p̃) > θ and that we effectively only have to consider θ̂(p̃).
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winning the full supply. If the clock ends at a higher price, due to market clearing

in the last clock round, they can safely bid Uj(x̃j) + p̃(1− x̃j). Thus, for types in

the interval [θ̃(p̃), θ̂(p̃)), the clock not stopping at p̃ makes their bid on the full

supply jump discretely by Uj(x̃j) + p̃(1 − x̃j) − (Uj(xj) + U(1− xj)). Knowing

this, it is profitable for some types higher than θ̃(p̃)—for whom the clock does

not definitely stop—to reduce demand at p̃ to be certain to end the clock. Thus,

θ̂(p̃) > max{θ, θ̃(p̃)} cannot be part of an equilibrium. On the other hand, if

θ̃(p̃) ≥ θ̂(p̃) or if θ̂(p̃) ≤ θ, then the supplementary bids of all types θj > θ̃(p̃)—for

which the clock phase possibly continues at prices p > p̃—are independent of the

final clock price so that they cannot raise their supplementary bids after obtaining

information through the final clock price. For this case, we show that there is no

incentive for demand reduction. Suppose type θi > θ̃(p̃) reduces demand at p̃.

Let θj > 2p̃+ σ − θi be such that the clock ends at p̃ under i’s demand reduction

although it would continue under truthful bidding. Bidder j bids 0 on x∗j if the

clock ends at p̃ as x∗j < x̃j. As the efficient allocation cannot be implemented,

the demand reduction leads to a decrease in bidder i’s primary utility. Therefore,

equilibrium requires that θ̃(p̃) ≥ θ̂(p̃) or θ̂(p̃) ≤ θ.

Third, we should also make sure that bidders do not have an incentive to

expand demand further than is stipulated in the candidate equilibrium strategies

by deviating and demanding more than x̃i(p̃) until p > p̃. To this end, we first

argue that for all types θi < θ the clock phase must stop at p̃ with positive

probability in equilibrium. From the candidate equilibrium strategies, it is clear

that if the clock can end for the highest possible type θ, it can also end for all other

types. The reason the clock must possibly stop for all types is that if a bidder with

type θ knows that the clock will certainly not end under truthful bidding, then he

prefers to continue demanding the full supply. To see this, recall that to have a

semi-separating equilibrium it should be the case that x̃(p̃, θ) > 1/2, which implies

that p̃ < θ − σ/2. Given the definition of θ̃(p̃) and the constraints derived in the

previous paragraph, this implies that θ̂(p̃) < θ. Thus, in the candidate equilibrium

strategy, the activity rules restrain bidder θ from fully raising the rival’s cost.

Continuing bidding on the entire supply would allow further raising the rival’s

cost without affecting the final allocation (and the price he pays). To make sure

that it is possible for the clock to end along the equilibrium path for all types

θi < θ, it should be the case that p̃ ≥ (θ + θ − σ)/2 = u(x, θ) = u(x, θ).

Next, we argue that expanding demand at p̃ results in a decrease of expected

surplus as there is a positive probability that the clock ends by bidding truthfully

at p̃ for all types. To see this, we use the difference between the supplementary
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bidding strategies S p̃i (x) and Sp
∗

i (x) in Equations (2) and (3), respectively. If

bidder j were to bid truthfully, the clock would stop at p̃ for all types θi ≤
2p̃+ σ− θj. Importantly, the aggregate clock demand at p̃ is arbitrarily close to 1

if the competitor’s type is just below 2p̃ + σ − θj. If the clock ends at p̃, we have

x∗j > x̃j so that the supplementary bidding function (2) guarantees that bidder j

gets the efficient share at a price min{Ui(xi)+U(1−xi), Ui(x̃i)+p̃(1−x̃i)}−Ui(x∗i ).
Consider then that bidder j expands demand at p̃. In that case, there will exist

some types θi just below 2p̃+ σ− θj for which the clock will end at a higher price

than p̃. Given that the supplementary bid strategy of these types will change from

(2) to (3), bidder j gets at most a utility of Uj(1−x̃i)−[Ui(x̃i) + p̃(1− x̃i)− Ui(x̃i)].
As 1− x̃i > x∗j for some types θi bidder j is better off not deviating.

All of the above constraints can be jointly satisfied for a variety of final clock

prices. For example, we can set p̃ = (θ + θ − σ)/2 as we did in Figure 4. At this

price, the highest type for which the clock definitely ends at the threshold price is

θ̃(p̃) = θ and equilibrium exists whenever θ̂(p̃) ≤ θ, or θ − θ ≤ (
√

2− 1)σ.

Discussion. We conclude that a semi-separating equilibrium as discussed above

exists if the uncertainty concerning the competitor’s type, measured by θ − θ, is

not too large. This equilibrium is efficient as all bidders bid their true marginal

utilities on possibly efficient shares in the supplementary phase and other bids are

such that the winning bid combination is in this range of possibly efficient shares.

Thus, there are efficient equilibria with some information revelation, where low

types pool and high types are constrained by the activity rule so that they cannot

exploit new information to raise their rival’s cost.

The semi-separating equilibrium is noteworthy as it shows that even if bidders

know that the competitor is raising their cost in the supplementary phase, they do

not reduce demand in the clock phase. This is in contrast to Levin and Skrzypacz

(2016), who restrict bidders to linear proxy strategies and show that bidders will

engage in demand reduction in the clock phase, assuming (against the auction

rules) that a demand reduction strategy in the clock phase does not affect the

ability to raise a rival’s cost. The example also shows that, in contrast to what

some observers of the CCA have argued, the clock phase may well end up with

excess supply, while bidders are still able to raise their rival’s cost.15

15See, e.g., Levin and Skrzypacz (2016, remark 2 on page 2542) where they observe that “If
we allowed bidder 2 to create excess supply at the end of the clock phase, she could increase
bidder 1 payment even more. ... Such extreme predatory behavior is even more difficult to
execute and even more risky for player 2 than what we describe. Moreover, analyzing equilibria
in this case is difficult, so we maintain the assumption that player 2 is not allowed to create
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A variant of this equilibrium occurs if the clock stops at p̃ for all type profiles. In

such a clock-pooling equilibrium, the clock does not reveal any information. There

are three constraints on the clock-pooling price p̃. First, the truthful demand at p̃

of the strongest bidder should be smaller than half the supply for the clock to end.

Second, no bidder should have an incentive to further expand demand because p̃

is such that the final and relative cap do not restrict the spiteful bid. Third, as

before, the weakest type should still derive non-negative utility. The constraints

on p̃ specify a tighter upper bound on the range θ − θ for such a clock-pooling

equilibrium to exist.

4 Non-Existence of Efficient Equilibria with Large Uncer-

tainty

So far we have seen that efficient clock-revealing equilibria do not exist, but that

efficient equilibria may nevertheless exist even if bidders are spiteful. The example

presented in the previous section constructs an efficient equilibrium where the

uncertainty concerning the final allocations, measured by θ−θ, is relatively small.

In this section, we will consider auctions where the ex-ante uncertainty concerning

the final allocations is relatively large and, consequently, information revelation

might be more important. Our second main result shows, however, that the CCA

does not have efficient equilibria when the uncertainty about the other bidder’s

type is sufficiently large. To simplify the proof, we consider (type-) symmetric

equilibria, that is, equilibria where identical types use identical strategies.16,17

Proposition 3. Let u(1, θ) > u(0, θ). Due to the high ex-ante uncertainty about

the final allocation, no symmetric efficient equilibrium exists.

Importantly, if the uncertainty concerning bidders’ types is substantial all equi-

libria of the CCA, which is a dynamic implementation of the VCG auction, are

excess supply in the clock phase.” Similarly, Kroemer et al. (2016, p. 38) observe that “In recent
spectrum auction implementations, the regulator decided not to reveal excess supply in the last
round, in order to make spiteful bidding risky. It depends on the market specifics, if this risk is
high enough to eliminate spiteful bidding.” The British regulator Ofcom (2015, A8.48 on page
16) also writes in a similar vein when they consider the Austrian 2013 CCA outcome: “We also
noted that at the end of the clock rounds there was an excess supply of 2x10 MHz in each of
the 900 MHz and 1800 MHz bands. ... This further suggests a possible reason why bidders may
have considered price driving in the supplementary bids to be a risky strategy ... .”

16We believe that asymmetric efficient equilibria do not exist either, but a formal proof would
require checking many different cases.

17The proof of this result can also be used to show that efficient equilibria do not exist if the
lowest type θ does not value the good at all, i.e., u(x, θ) = 0.
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inefficient. The next section shows that no matter how large this uncertainty is,

the VCG auction always has efficient equilibria. It is, therefore, the information

that is transmitted during the clock phase that may destroy efficiency (even if

little information is provided). The result demonstrates that blending two well-

meant auction design principles (the second-price principle and an open format)

may have unintended consequences!

The main intuition for this result can be developed by combining different

arguments that we have previously developed. From Proposition 2 we know that in

any efficient equilibrium, some types will expand demand. Because of the relative

cap and the large type space, the clock must last long in an efficient equilibrium

if one bidder is sufficiently strong. The long duration gives some relatively strong

types the possibility of weakening the constraints of the activity rules by expanding

demand. Because of the high uncertainty, the highest and the lowest types cannot

pool at a threshold price in an efficient equilibrium. Consequently, the clock not

ending when low types drop out reveals to strong types that their competitor is

strong. The spiteful bid of high types then jumps discretely in any supplementary

round that follows a longer duration of the clock. Other types will reduce their

clock phase demand in anticipation of this behavior, which—given the activity

rules—necessarily leads to inefficiencies.

This argument is developed in more detail with the following notation. Note

that if u(0, θ) < u(1, θ) there exists a type θ′ > θ such that u(0, θ′) = u(1, θ) and

that the lowest possible efficient share of all types in [θ, θ′] is 0. Likewise, there is

a type θ
′
< θ such that u(1, θ

′
) = u(0, θ) so that the largest possible efficient share

of all types in [θ
′
, θ] is the full supply.

We first argue that in any efficient equilibrium, when the lowest type θ meets

a type above θ
′
, the final clock price must be u(0, θ), which is the clock price at

which the lowest type drops out of the auction under truthful bidding. Because

of the high uncertainty, the truthful demand of types above θ
′

is the full supply

at this price. If the final clock price p was smaller for such a type profile, then at

least one of the bidders would have reduced demand as for these prices u(1, θ′) >

u(0, θ) > p for all types θ′ > θ
′
so that if none of them would have reduced demand

aggregate demand would be larger than supply. Given the restrictions imposed

by the relative cap, these bidders could not bid marginal utilities on all possibly

efficient shares in the supplementary round (Proposition 2). The final clock price

for such a type combination cannot be larger than u(0, θ) either as this would

imply that θ and some marginally larger types have excessively expanded demand.

Demand expansion at these high prices and the requirement that supplementary
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bids must be at least as high as clock bids lead to the bidder necessarily winning

too much or too little. Thus, the clock must end at u(0, θ) for these type profiles.

Second, we show that in any efficient equilibrium types marginally larger than

θ will demand truthfully at clock prices slightly larger than u(0, θ). By the same

reasoning as in the previous paragraph, the clock cannot end later than uj(0) for

θj > θ through demand expansion. Bidders also cannot reduce demand as the rel-

ative cap then prevents them from bidding true marginal values on efficient shares

which is necessary for ex-post efficiency. As a result, they must bid truthfully at

these prices.

Given this behavior of types just above θ we next argue that similar to the

reasoning in Proposition 1, types just below θ
′
find it optimal to maximally expand

demand in the clock phase for prices p < u(0, θ). The reason is that by maximally

expanding demand, the clock cannot end at prices p < u(0, θ), while they know

that in an efficient equilibrium the clock will continue for them if the rival is

sufficiently strong. Expanding demand in the clock implies they discretely increase

their supplementary bid on the full supply if the clock stops at a price larger than

u(0, θ) compared to the situation where the clock stops at u(0, θ) and they find it

optimal to do so. In anticipation of this behavior, some types in (θ, θ′] will then

find it profitable, however, to reduce their demand at u(0, θ), ending the clock

prematurely to prevent the rival to further raise their costs. Such behavior is

inconsistent with efficiency, however, showing that there is no efficient equilibrium.

4.1 Inefficient Equilibria in the Quadratic Utility Model

This subsection uses the quadratic utility model to present an example of an inef-

ficient equilibrium illustrating the kind of equilibria that may exist when efficient

equilibria do not exist. Thus, the example underlines that Proposition 3 is not

due to a general non-existence of equilibrium. In our example, the final alloca-

tion is almost surely inefficient as bidders either win 0, 1/2, or the full supply.

For simplicity, we consider a CCA in which bidders are informed about aggregate

demand in the final clock round.

Let σ < θ − θ ≤ 3/2 · σ. We have three threshold prices p̃1 < p̃2 < p̃3 and

partition the type space into [θ, θ1), [θ1, θ2) and [θ2, θ]. Call θ3 = θ and θ0 = θ.

Let I ∈ {1, 2, 3} be the index for type θi ∈ (θI−1, θI ], where the interval is closed

for I = 3. Define J analogously for a bidder with type θj.

We choose the prices such that

U(1/2, θI−1)− p̃I/2 = 0
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and the cutoff types so that

U(1/2, θI)− p̃I/2 = U(1, θI)− p̃I .

Thus, at price p̃I type θI−1 is indifferent between dropping demand to 0 and

bidding for half of the supply, while type θI is indifferent between bidding for half

of the supply and the full supply. For θ the equality can be an inequality so that

the left-hand side is larger than the right-hand side. When bidders have quadratic

utility functions, we have p̃I = θ − σ
4

+ (I − 1) · σ
2

and θI = θ + I·σ
2

.

Strategies. In the clock phase, type θi ∈ [θI−1, θI) follows the clock demand

function

xi(p) =

1 for p < p̃I

0 for p ≥ p̃I .

Hence, the clock ends with both bidders demanding 0 if I = J , and with one

demanding the full supply and the other demanding 0 if I 6= J .

The supplementary bids depend on aggregate demand in the final clock round.

If the clock ends with aggregate demand of 0 at the final clock price p̃, then θi

bids

S p̃
I

i (x|xi (p̃) + xj (p̃) = 0) =


p̃/2 for x = 1/2

p̃ for x = 1

0 else.

If aggregate demand in the last clock round is positive, then the supplementary

bidding function is given by

S p̃
I

i (x|xi (p̃) + xj (p̃) > 0) =

p̃ for x = 1

0 else.

The supplementary bidding functions clearly satisfy the constraints of the activity

rules and the final and the relative cap are binding for strictly positive bids. The

difference between the two bidding functions is that in the former case a positive

bid on 1/2 is submitted, whereas in the latter case no such bid is made.

No Incentive to Deviate. If bidders belong to the same partition group, i.e.,

I = J , then both win half of the supply at the CCA price p̃I/2. The construction

of p̃I and the cutoff types make it clear that these bidders prefer this outcome over

winning the full supply at a price of p̃I . Bidders could win x > 1/2 by deviating
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to demanding x at the final clock price p̃I (instead of 0). The CCA price for x

would then be p̃I . It is clear that this gives less surplus than the full supply, which

in turn is a worse outcome than winning 1/2. Bidder i could also win a share

0 < x < 1/2 at the CCA price of p̃I/2 by deviating in the supplementary phase

that follows p̃I and zero aggregate demand. Again, this leads to a lower surplus

than winning 1/2.

Next, consider the case where θi and θj are such that I < J . The clock ends at

p̃I with market clearing. Bidder j wins the full supply at the CCA price p̃I . The

construction of the prices and cutoff types is such that the stronger bidder prefers

winning 1 at CCA price p̃I over 1/2 at the CCA price p̃I/2. The lowest price at

which bidder i could win a positive amount is p̃J , which is so high that bidder i

would make a loss. Hence, bidders do not have an incentive to deviate, even if

they know the competitor’s type. Hence, the proposed strategies form an ex-post

equilibrium. There are also no profitable deviations in the spite dimension of the

preferences. If a bidder demanded x > 0 at p̃I , then he would lose the possibility

of winning 1/2 at a price at which he makes a positive surplus. Hence, a bid-

der cannot further raise their rival’s costs without decreasing their own expected

surplus.

Discussion. The inefficiency in this equilibrium can be quite substantial. For

example, if a type marginally below the cutoff meets a type marginally above the

cutoff, the efficient allocation has both bidders approximately winning half the

supply. The equilibrium outcome is, however, one where the slightly stronger type

wins the full supply. For θ1 with σ = θ, this amounts to a welfare loss of 20%.

If the uncertainty is larger (or smaller) than assumed in this subsection, then it

is easy to extend the equilibrium construction to more than three threshold prices.

5 The VCG Mechanism

To better understand the implications of having a clock phase for raising the rival’s

cost, we now briefly analyze the VCG mechanism. The purpose of this section is

twofold. First, we want to establish how we see the weak preference for raising

the rival’s cost as an alternative way to select among the many equilibria of the

VCG. Second, we want to show that, independent of the size of the uncertainty,

the VCG always has efficient equilibria when bidders are spiteful. The contrast

with the result from the CCA of the previous section reinforces the point that it

is the dynamic element of the CCA, i.e., the clock phase, that is responsible for
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the inefficiency result via an effect that is similar to the ratchet effect.

We first show that under standard preferences the outcome of applying iterative

elimination of weakly dominated strategies (IEDS) to the VCG mechanism is

always efficient, but that the payments are undetermined and depend on the way

IEDS is implemented. Truthful bidding is one of the strategies that survives IEDS,

but, depending on the order of elimination, other strategies may survive IEDS as

well. Bidders have to bid true marginal values on possible efficient shares in the

interval [xi, xi] in order to get the efficient share. Outside the interval [xi, xi],

bidders may bid differently as, depending on the order of elimination, bids on

these shares may not be pivotal. As for weaker bidders, it is always the case that

xi < 1, these bidders have a range of shares for which the bid is undetermined

by IEDS and the choice of these bids determines how much competitors have to

pay. Accordingly, the payments in the VCG mechanism may well differ from the

payments under truthful bidding.

Proposition 4. In the VCG mechanism with standard preferences, any strategy

profile that survives any process of IEDS implements the efficient allocation. The

VCG payments depend, however, on the order in which weakly dominated strategies

are eliminated and on the choice of strategy profile that survives IEDS.

One way to resolve the indeterminacy related to payments is to imposing that

bidders play their weakly dominant strategy. The lexicographic spiteful prefer-

ences may be viewed as a more plausible alternative.

Under spiteful preferences, truthful bidding is not an equilibrium in the VCG

mechanism. To see this, suppose other bidders bid truthfully and consider a weak

enough bidder with type θi for whom xi < 1. Without lexicographic preferences,

bidder i is indifferent between some bids on (xi, 1]. A lexicographic bidder knows,

however, that he can increase the price other bidders have to pay. The easiest

way to do so is to increase the bid Si(1) on the full supply as much as possible

under the constraint that it is not winning.18 He never wins the full supply in an

efficient equilibrium if for all θj ∈ [θ, θ]

Si (1) ≤ Si (x
∗
i (θi, θj)) + Sj

(
x∗j (θj, θi)

)
. (5)

The right-hand side of (5) depends on the type of the other bidder and is minimized

if the other bidder has the lowest possible type θ. Hence, given our formulation

of the spite motive, bidder i wants to set the bid on 1 equal to the minimal value

18He could also increase his bid on other x ∈ (xi, 1), but this does not create any benefit.

31



of the efficient allocation given bidder i’s type. If both bid true utility on [xi, xi],

then the optimal bid is Si(1) = Vi(θ). Thus, both bidders can use their private

information and their knowledge about the lowest possible type of their rival to

raise the bid on the full supply. Types that can win everything in an efficient

equilibrium maximize the rival’s payment by bidding truthfully, in which case

Si(1) = Ui(1) = Vi(θ).

The next proposition determines an efficient equilibrium under lexicographic

preferences where bidders bid truthfully on all possible shares, apart from 1 if

the type is low enough.19 The equilibrium strategies are increasing in x, but not

necessarily continuous at 1.

Proposition 5. Let bidders have lexicographic spiteful preferences. The strategy

profile in which bidder i = 1, 2 with type θi plays

Si(x) =

Ui(x) for 0 ≤ x < 1

Vi(θ) for x = 1,
(6)

forms an equilibrium of the VCG auction. Under standard preferences, there is a

process of IEDS such that this strategy profile is iteratively undominated.

In strategy profile (6), all bidders bid true utility on all shares smaller than 1.

No bidder can further raise the VCG price without running the risk of winning,

as the other bidder’s type may be such that the value of the efficient allocation is

minimal. Hence, the strategy profile is an equilibrium under lexicographic prefer-

ences for raising the rival’s costs. Note that the strategy profile in (6) implements

the efficient allocation and survives the IEDS of the proof of Proposition 4.

It is also important to note that all types θi > θ make positive surplus. This

is because bidders do not want to risk winning the full supply and therefore are

restricted in raising their rival’s cost by the lowest possible efficient value Vi(θ).

If bidders knew their rival’s type, they would fully expropriate them in any equi-

librium where bidders bid valuation on the possibly efficient shares [xi, xi]. Thus,

in the VCG mechanism, bidders benefit from rivals being uncertain about their

type.

19This is not the only equilibrium when bidders have lexicographic preferences. It is clear
that bidders never want to bid above value on possible efficient shares. To protect themselves
against others raising their price, bidders may, however, reduce their own bids on the domain of
possibly efficient allocations without affecting their marginal bids.
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6 Discussion and Conclusion

This paper provides a full equilibrium analysis of the CCA where the strategic

interaction between the clock phase and the supplementary round is studied in an

environment where bidders not only care about their own payoff but also (lexico-

graphically) about how much rivals pay. We have two main results. First, there

does not exist an efficient equilibrium of the CCA that fully reveals the type of

the competitor in the clock phase. Our second main result is that the CCA is

inefficient if the uncertainty concerning final allocations is relatively large.

It is difficult to assess whether or not real-world CCAs have been efficient,

as this would require knowing bidders’ utility functions. However, many of the

equilibrium features of the CCAs we have highlighted show similarities to observed

features of CCAs. Without pretending that there are no alternative explanations

for these phenomena, we provide the following observations. First, after the 2013

auction, the Austrian regulator RTR observed that during a large part of the clock

phase, bidders’ demanded close to their full spectrum caps. This is in line with

our examples on clock-pooling and clock-semi-separating equilibria and explained

by our result on demand expansion in the clock phase. Second, the Austrian

mobile network operator Telekom Austria (2013) indicates in a press release after

the auction that the clock phase ended with excess supply in key spectrum bands.

According to the Austrian regulator RTR, this did not prevent the bidders from

bidding aggressively in the supplementary round.20 This is also in line with our

examples on clock-pooling and clock-semi-separating equilibria, where we argue

that bidders create excess supply purposefully to obfuscate their type to prevent

rivals from raising their costs.21

Ausubel and Baranov (2015) have worked on alternative activity rules with

the purpose of providing bidders with stricter incentives to bid according to their

intrinsic preferences. They propose replacing the relative cap we used in this

paper by GARP (the generalized axiom of revealed preference). We observe that

in none of the equilibria we constructed did bidders violate GARP, and we conclude

therefore that most of our results continue to hold if we were to adopt the GARP

activity rule.

We end our paper by briefly discussing the robustness of our results to changes

in the model. First, many of our findings hold when there are more than two

20See https://www.rtr.at/en/pr/PI28102013TK
21The clock phase of the Canadian 700 MHz auction also ended with excess supply even

though these units were allocated in the supplementary round.
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bidders. Equilibria with more than two bidders feature coordination on how the

rivals’ costs are raised. In equilibrium, this coordination is not an issue, but

characterizing the equilibrium is more difficult. Restricting the analysis to two

bidders also has a certain virtue beyond simplicity, as all relevant information

may be revealed in a fully revealing equilibrium. When two bidders bid truthfully

in the clock phase, the final clock price reveals the other bidder’s type. With more

than two bidders, however, one only learns at most the ‘sum of types.’ The two

bidder case, therefore, allows the clearest test of the CCA. Second, it might be that

values are not private but interdependent. In this case, information revelation in

the clock may improve efficiency. While this may be true, the underlying economic

forces described in this paper still hold. Low types know that they cannot win the

full supply, so they expand demand in order to place high bids on the full supply

to raise rivals’ costs. Bidders are therefore still reluctant to reveal their private

information because they know that by doing so they will be exploited. Thus, the

trade-off between information revelation and efficiency we have uncovered in this

paper is likely to remain important in more complicated settings.

A Omitted Proofs

Proposition 1. There does not exist an efficient clock-separating equilibrium in

the CCA.

Proof. Suppose an efficient clock-separating equilibrium exists. Clock separation

requires that demand is monotone in type, i.e., θi ≥ θj implies xi(p) ≥ xj(p). Let

T be an open neighborhood of the type profile θ ∈ [θ, θ]2 so that for any θ ∈ T
all bidders are winners in the efficient allocation. The equilibrium strategy profile

must have the following properties.

First, the clock must end with market clearing almost surely. Suppose there

is a positive probability, i.e., an open set of type profiles T ′ ⊆ T , that the clock

ends with excess supply. The clock ends with excess supply only if a bidder uses

a demand function with discrete downward jumps. Without loss of generality, let

bidder 1 make a jump that ends the clock for type profile θ ∈ T ′ at τ(θ) = p. Con-

sider type θ′2 being slightly smaller than θ2. Then the clock must end with excess

supply at τ(θ1, θ
′
2) by bidder 2 making downward jumps, because τ is increasing

in θ2. Fix θ′2 slightly smaller than θ2 such that τ(θ1, θ
′
2) = p′ < p and bidder 1’s

demand with type θ1 has no jumps on [p′, p). Note that for a given θj, the function

τ(θi, θj) is strictly increasing in θi, and therefore continuous almost everywhere.

Hence, there exists a type θ′1 slightly larger than θ1 such that τ(θ′1, θ
′
2) = p′′ and
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p′ < p′′ < p. At p′′ it is bidder 1’s discrete decrease that ends the clock. Since

demand functions are monotone in type, it must be that type θ1 drops demand at

p′′, a contradiction.

Second, the relative cap must be binding for relevant shares in (x∗i , 1] in any

supplementary phase on the equilibrium path. Since the clock ends with market

clearing almost surely and the equilibrium is efficient, demand in the final clock

round must be the respective efficient shares. This follows from the definition of

the final cap rule. In addition, the clock ending with market clearing and the final

cap imply that the supplementary bids only determine the other bidder’s CCA

price. If the relative cap was not binding, then a spiteful bidder could further

raise the supplementary bids on shares that determine other bidders’ CCA prices

relative to the efficient share without changing the final allocation. The proposed

equilibrium strategy would then not be a best response in the spite dimension.

Third, bidders need to demand truthfully for p ∈ [ui(xi), ui(xi)]. The clock

ends with market clearing and the relative cap is binding. Bidder j wants to win

the efficient share only if uj(x
∗) = si(1 − x∗) = ui(1 − x∗). Hence, bidder i must

demand truthfully.

We now show that, given these properties, there is a profitable deviation from

the clock-separating equilibrium strategy. This deviation leads to the same ex-

pected utility in the first dimension of the preferences, but to strictly higher CCA

prices for some possible final clock prices. Bidder i deviates by first expanding

demand for some prices strictly above ui(xi) and bids truthfully at some price

p > ui(xi) and from then on. If the clock ends at p, it almost surely ends

with excess supply. Other bidders do not see the deviation and believe that

the clock ended with market clearing. They fully raise the supplementary bids

to sj(x) = uj(x) for x ∈ [xj(p), xj]. Hence, a suitable level of Si(xi(p)) and true

marginal values si(x) = ui(x) on [xi(p), xi] implement the efficient allocation. The

CCA price for the deviating bidder is the same as under the initial strategy, since

the CCA price is independent of the final clock price. The CCA price for the other

bidder is not less than the ‘equilibrium’ price if the clock ends at p. If the clock

does not end at p, it will end at a higher clock price with market clearing. The

deviation weakened the constraints of the activity rule, hence the bids on (xi, 1]

are strictly larger than those of the initial strategy and lead to a higher CCA price

for the other bidder.

Proposition 3. Let u(1, θ) > u(0, θ). Due to the high ex-ante uncertainty about

the final allocation, no symmetric efficient equilibrium exists.
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Proof. The following Lemma describes the necessary equilibrium clock behavior.

The remainder of the proof concerns the supplementary bids on the equilibrium

path. Let x̃i denote the truthful demand of θi at p.

Lemma 1. Let u(0, θ) < u(1, θ). In any symmetric efficient equilibrium, there

is an ε > 0 such that type θi ∈ [θ
′ − ε, θ′) expands demand for some prices p <

p = u(0, θ). Moreover, there exists a δ > 0 such that all types in [θ, θ′] ∪ [θ
′ − ε, θ]

demand truthfully at p ∈ [p, p+ δ].

Proof of Lemma 1. We first prove three auxiliary claims and then the Lemma’s

claims in the order that they appear. We begin by showing that whenever a

relatively weak type demands a possibly efficient share in the clock phase on the

equilibrium path, this must be the truthful demand.

Claim 1. Let u(0, θ) < u(1, θ) and θj ∈ [θ, θ′]. In any efficient equilibrium and

for all p ≤ τ(θ, θj), if xj(p) ∈ (0, xj] then uj(xj(p)) = p, and if xj(p) = 0 then

uj(0) ≤ p.

Proof. Let u(0, θ) < u(1, θ) and consider any efficient equilibrium. Let θj ∈ [θ, θ′]

demand xj(p) ∈ [0, xj]. The proof of Proposition 2 shows that bidder θj cannot

reduce demand, as this would prevent him from bidding true marginal values in

any subsequent supplementary phase. Hence, uj(xj(p)) ≤ p.

To prove that there cannot be demand expansion, we first show a property any

efficient equilibrium must exhibit. Consider any efficient equilibrium and define

the equilibrium price type θj has to pay when facing θi as

pCCAi (θj) = max
y
S
τ(θi,θj)
i (y)− Sτ(θi,θj)i (x∗i (θj)).

Depict this function as pCCAi (θj) = ξ(θi, θj) − Ui(x∗i (θj)). We will first show that

ξ is independent of θj so that bidder j’s type enters the CCA price only via the

efficient share. It is clear that pCCAi cannot have any jumps, as this would lead

to discretely different prices for marginally different types. In an efficient ex-post

equilibrium, we must have

θj ∈ arg max
θ̃j

Uj(x
∗(θ̃j, θi))− pCCAi (θ̃j),

i.e., no type has an incentive to pretend to be a different type. Consider the first

36



derivative of the maximization problem with respect to θ̃j

∂x∗i (θ̃j)

∂θ̃j

[
ui(x

∗
i (θ̃j))− uj(1− x∗i (θ̃j))

]
− ∂ξ(θi, θ̃j)

∂θ̃j

and impose the optimality of truthful reporting, i.e.,

∂x∗i (θ̃j)

∂θ̃j

[
ui(x

∗
i (θ̃j))− uj(1− x∗i (θ̃j))

] ∣∣∣∣∣
θ̃j=θj

− ∂ξ(θi, θ̃j)

∂θ̃j
= 0.

The first term equals 0 as either the efficient share is in the interior so that the

marginal utilities are equal or it is on the boundary so that the efficient share does

not depend locally on θj. Hence, in an efficient equilibrium ξ cannot depend on

θj and we have

pCCAi (θj) = ξi − Ui(x∗i (θj)). (7)

Coming back to the proof of the claim, suppose that p ≤ τ(θ, θj) and x̂ = xj(p)

with uj(x̂) < p. When the clock ends at τ(θ, θj), type θj highest supplementary

bid is maxy Sj(y) = ξj as Sj(0) = Uj(x
∗(θj, θ)) = 0. The CCA price for share x̂

when the clock ends at τ(θ, θj) is therefore

ξj − S
τ(θ,θj)
j (x̂) ≤ ξj − px̂ < ξj − Uj(x̂),

where the first inequality follows from clock bids remaining valid (i.e., the activity

rules’ constraint from below), while the second inequality follows from demand

expansion. Note there is a type θ̂ such that x̂ = x∗(θj, θ̂). This type gets 1− x̂ at

a price that is smaller than (7). This is a contradiction.

Claim 2. Let u(0, θ) < u(1, θ). In any symmetric efficient equilibrium, for all

θj ∈ [θ, θ′] we have τ(θ, θj) ≤ uj(0).

Proof. Suppose to the contrary that there is a symmetric and efficient equilibrium

and a type θj ∈ [θ, θ′] such that p̂ = τ(θ, θj) > uj(0). Claim 1 implies that when-

ever bidder j demands a possibly efficient share, bidder j must demand truthfully.

The clock ends, however, at uj(0) at the latest under truthful bidding. Hence,

τ(θ, θj) > uj(0) can be true only if bidder j demands xj(p) > xj for p < p̂ and

0 at p̂. In a type-symmetric equilibrium, the clock necessarily ends for at least

all θi ≥ θj at p̂. In the supplementary phase that follows the clock ending at p̂,

efficiency requires θj bidding true marginal utility on [0, 1/2]. As S p̂(0) = 0, this

implies bidding true utility, i.e., S p̂j (x) = Uj(x) for x ∈ [0, 1/2].
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We will now show that the efficient allocation (1/2, 1/2) is not implemented if

both bidders have type θj. Let δ > 0 be small enough so that p̂ − δ > uj(0) and

let x = xj(p̂− δ) > 1/2. For the equilibrium to be efficient, we must have

2S p̂j (1/2) = 2Uj(1/2) ≥ S p̂j (x) + S p̂j (1− x) ≥ (p̂− δ)x+ Uj(1− x),

where we use truthful bidding on possible efficient shares and the fact that clock

bids remain valid. The inequality simplifies to

Uj(1/2) +

∫ 1/2

1−x
uj(y) dy ≥ (p̂− δ)x ⇒

uj(0)/2 + uj(1− x)(x− 1/2) > (p̂− δ)(1/2 + x− 1/2).

The inequality is false, however, as p̂− δ > uj(0) ≥ uj(1− x).

Claim 3. Let u(0, θ) < u(1, θ). In any symmetric efficient equilibrium, there is

an ε > 0 such that for all θi ∈ [θ
′ − ε, θ] we have τ(θi, θ) = p = u(0, θ).

Proof. Suppose to the contrary that there is a symmetric efficient equilibrium such

that for all ε > 0 there is a type θi ∈ [θ
′ − ε, θ] with τ(θi, θ) 6= u(0, θ). There are

three exhaustive cases to consider. First, Claim 2 shows that τ(θi, θ) > u(0, θ)

cannot occur for any θi in a symmetric efficient equilibrium because if it happened

for θi it would also happen for θ in a monotone equilibrium. Second, we will show

that it is impossible that τ(θi, θ) < u(0, θ) for any θi ∈ [θ
′
, θ]. The third case

considers types just below θ
′
.

It is straightforward to see that in any efficient equilibrium it cannot be that

for type θi ∈ [θ
′
, θ] we have τ(θi, θ) = p < u(0, θ). Proposition 2 tells us that in an

efficient equilibrium bidders do not reduce demand at this price. If p < u(0, θ) ≤
u(1, θ) the truthful demand of types just below θ

′
at p equals the full supply, while

the truthful demand of the low type is strictly positive. Hence, the clock cannot

end at τ(θi, θ) = p < u(0, θ).

We now turn our attention to types ‘just below’ θ
′
as it could be that for every

ε > 0 there is a type θi ∈ (θ
′ − ε, θ′) with τ(θi, θ) < u(0, θ). From the previous

case it follows that τ(θi, θ) must be increasing in θi because otherwise there would

be types just below θ
′

whose truthful demand is the full supply and who reduce

demand, contradicting Proposition 2. We will show that for types just below θ
′
the

clock must end at u(0, θ) if they meet the lowest type. It cannot end earlier due to

an argument that relies on bidders having spiteful lexicographic preferences and

which is akin to the proof of Proposition 1. For clock prices just below u(0, θ),
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the truthful demand of types just below θ
′

is almost the full supply, while low

types’ truthful demand is slightly above 0. The function τ(θi, θ) increases in θi

if demand is decreased continuously. Efficiency of equilibrium and the final cap

require bidders to lower demand truthfully. Hence, the lowest type is active for

all p < u(0, θ). The marginal supplementary bids when the clock ends at u(0, θ)

must satisfy the relative cap s(x, θ) ≤ u(x, θ), which follows from truthful bidding

at prices just below clock price u(0, θ). Thus, the lowest type bids true utility

on shares (slightly) above 0. This follows from the relative cap being necessarily

binding in an efficient and information revealing equilibrium. As a result, types

just below θ
′

have no incentive to lower demand truthfully at prices just below

u(0, θ), because they can expand demand until u(0, θ) and still get the efficient

share at the same CCA price if they meet a very low type.

The first claim of the Lemma follows directly from the previous claim. For

types just below θ
′

the clock does not end before u(0, θ) in an efficient equilib-

rium. Thus, these types will expand demand for clock prices p < u(0, θ) = p in

equilibrium. The demand expansion weakens the (necessarily) binding constraint

of the relative cap.

The second claim of the Lemma is that there is a δ > 0 such that types in

[θ, θ′]∪[θ
′−ε, θ] demand truthfully for p ∈ [p, p+δ]. Bidders cannot reduce demand

due to Proposition 2. The proof of Claim 2 rules out θj ∈ [θ, θ′] demanding x > xj

for p < uj(0) and xj(uj(0)) = 0. Claim 1 then shows that θj ∈ [θ, θ′] bids truthfully

for clock price p ∈ [p, p+ δ]. Type θi ∈ [θ
′ − ε, θ] also has to bid truthfully as the

low types bid truthfully. Demand expansion of a type whose truthful demand is

arbitrarily close to the full supply at p ∈ [p, p+δ] goes along with the possibility of

market clearing. As the equilibrium is efficient, bidders have to demand truthfully

at prices at which the clock can end with market clearing.

We prove the proposition by showing that types just below θ
′

can make the

CCA price dependent on the final clock price and this will incentivize some weak

bidders to pool with lower types by reducing demand. Consider type θi just below

θ
′
that expands demand for prices just below p. Claim 3 of the proof of the Lemma

shows that the lowest equilibrium final clock price of θi is p. Let θj denote the

highest type for which the clock may end at p when meeting θi under truthful

bidding, that is, ui(x̃i) = uj(x̃j). It is clear that θj > θ.

When the clock ends at p, efficiency requires the lowest type to bid true utility

in a neighborhood of 0 in the supplementary phase. This follows from Sp(0) = 0,

the necessity of bidding true marginal values on possible efficient shares, and the
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clock ending at p for all types in (θ
′ − ε, θ]. Hence, when the clock stops at p

bidder i’s supplementary bid on the full supply must be

Spi (1) = min{Spi (x̃i) + p(1− x̃i), Spi (xi) + U(1− xi)}.

Note that x̃i = x∗(θi, θj) < xi = x∗(θi, θ) for types just below θ
′
. Since the clock

ends at p when bidder i meets a type below θj, bidder i must bid true marginal

values on [x̃i, xi] in the supplementary phase when the clock ends at p in an efficient

equilibrium, i.e., Spi (xi) = Spi (x̃i) + Ui(xi)− Ui(x̃i).
Now we show that the relative cap is slack for θi in the supplementary phase if

the clock ends at p, that is, Spi (1) = Spi (xi)+U(1−xi) < Spi (x̃i)+p(1−x̃i). Suppose

the inequality was false. Inserting the expression for Spi (xi) and simplifying yields

p(1− x̃i + xi − xi) ≤ Ui(xi)− Ui(x̃i) + U(1− xi) ⇒

p(1− xi) + p(xi − x̃i) < ui(x̃i)(xi − x̃i) + p(1− xi).

The implication uses decreasing marginal values (e.g., u(0, θ) · x > U(x)) and

p = u(0, θ). Hence, the last inequality is false and the relative cap must be

slack in the supplementary phase that follows p. The presence of types close to θ

therefore limits the types just below θ
′

from fully raising the supplementary bid

on the entire supply after the clock ends at p.

As the clock continues after p, types just below θ
′

learn that the competitor’s

type is at least θj > θ. Let p∗ ∈ (p, p + δ), where the neighborhood is given by

Lemma 1. As demand is lowered truthfully, the clock can end with market clearing

at clock price p∗ > p in equilibrium. In the subsequent supplementary phase,

bidder i will raise the bid on the full supply so that the relative cap is binding.

For shares in [xi(p
∗), x̃i] the relative cap requires si(x) ≤ ui(x) due to truthful

bidding in the clock phase. Bidder i will also take these constraints as binding

and will bid Si(x̃i) = Si(x
∗
i )+Ui(x̃i)−Ui(x∗i ). As a result, the CCA price for types

around θj jumps from Ui(xi) + U(1− xi)− Ui(x∗i ) to Ui(x̃i) + p(1− x̃i)− Ui(x∗i ).
This discrete increase in the CCA price incentivizes types marginally larger than

θj to inefficiently reduce demand at p to avoid the jump in the CCA price. Thus,

there is no efficient equilibrium.

Proposition 4. In the VCG mechanism with standard preferences, any strategy

profile that survives any process of IEDS implements the efficient allocation. The

VCG payments depend, however, on the order in which weakly dominated strategies

are eliminated and on the choice of strategy profile that survives IEDS.
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Proof. First we show that with standard preferences, any strategy profile that

survives any process of IEDS implements the efficient allocation. This proof has

three parts. First, we show that bidding truthfully is always an optimal strategy.

Therefore, it survives any process of iteratively eliminating weakly dominated

strategies. Second, we argue that any bidder must be indifferent between any

strategy that survived the IEDS and truthful bidding. In the third and final step

we show that only the efficient allocation can be implemented by strategies that

survive IEDS. We will use the following notation. The set Si is the set of strategies

that survived IEDS for bidder with type θi. The set of iteratively undominated

strategy profiles is denoted as S = S1 × S2.
First, bidding truthfully is always an optimal strategy, i.e., it is a best response

against any strategy profile of the other bidder Sj. To see this, let the other bidder

use Sj and let x̂ denote the allocation implemented by the profile (Ui, Sj), that

is, Ui(x̂i) + Sj(x̂j) ≥ Ui(xi) + Sj(xj) for all other feasible allocations x. This

inequality also says that the surplus of bidder i is at least as large under the

allocation x̂ than under any other allocation, because one can simply subtract

the constant maxy Sj(y) on both sides. Truthful bidding is always optimal and

therefore Ui ∈ Si.
Second, bidder i must be indifferent between all Si ∈ Si and Ui. For all Si ∈ Si

it holds that for all other bidding functions Ti of bidder i and all bidding functions

Sj ∈ Sj the surplus of Si is at least as large as for Ti or strictly higher than for

Ti for at least one Sj. Recall that the surplus from Ui is at least as large as from

Si. As a result, the strategy Si is iteratively not dominated if and only if for all

Sj ∈ Sj the surplus of Si and Ui is the same for all Sj ∈ Sj.
We will now prove that any profile S ∈ S strictly implements the efficient

allocation, i.e.,
∑
Si(x

∗
i ) >

∑
Si(xi) for all feasible allocations x 6= x∗. First, note

that the only share implemented by (Ui, Sj) is the efficient share, that is,

Ui(x
∗
i ) + Sj(x

∗
j) > Ui(xi) + Sj(xj) for all x 6= x∗. (8)

To see this, suppose there is an allocation y 6= x∗ with Ui(yi) + Sj(yj) ≥ Ui(x
∗
i ) +

Sj(x
∗
j). As bidder j is indifferent between Uj and Sj, we have that Uj(yj)+Ui(yi) =

Uj(x
∗
j) + Ui(x

∗
i ). Strict concavity of U implies that there is a unique efficient

allocation, implying that y = x∗, a contradiction. Hence, (Ui, Sj) only implements

the efficient share. The next step uses this property to show that (Si, Sj) also

implements the efficient allocation. Again by contradiction, let x̂ 6= x∗ be the

allocation implemented by (Si, Sj). Bidder i is indifferent between Si and Ui, so
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Ui(x̂i)+Sj(x̂j) = Ui(x
∗
i )+Sj(x

∗
j), contradicting inequality (8). As a result, (Si, Sj)

must implement the efficient allocation.

The proof that the VCG prices depend on the process of IEDS is constructive.

We construct a sequence of eliminations that ends with a set of undominated

strategies. Strategies in the set will have the desired properties. In order to show

that a strategy is dominated, one needs to find an alternative strategy that yields

weakly higher utility against all admissible strategy profiles of the other bidders

and a strictly higher utility against some admissible strategy profiles. Above,

we have seen that bidding Ui is always optimal. In the subsequent three steps of

iterative elimination, we only have to find a strategy Sj to show that the alternative

of truthful bidding is strictly preferred.

Let B be the set of all bidding functions, i.e., the set of all S : [θ, θ]×[0, 1]→ R+.

Note that the optimality of a function depends on the type θi.

Step 1: Strategies Si for which there exists x̃ < 1 such that Si(x̃) > Ui(x̃) are

dominated. Bidder j uses the bidding function

Sj(x) =


maxy Si(y) + Si(x̃) for x = 1

maxy Si(y) for x = 1− x̃

0 else.

The bidding profile S implements the allocation in which bidder i wins x̃ and

bidder j wins 1 − x̃, since ties are broken in favor of interior allocations. Bidder

i’s surplus is Ui(x̃) − Si(x̃) < 0, whereas the surplus from bidding truthfully is

non-negative. Remove these dominated strategies to obtain S1 ⊂ B.
Step 2: Strategies are dominated that satisfy Si(1) > Vi(θ). Note that for low

types Vi(θ) > Ui(1). For high types it can be the case that xi = 1, so Ui(1) = Vi(θ).

Bidder j bids Sj(x) = 0 for x < 1 and Sj(1) = Si(1)−ε, with ε ∈ (0, Si(1)−Vi(θ)).
Bidder i wins the full supply at a price higher than utility. Truthful bidding is

therefore strictly better against this strategy profile of other bidders. Remove

these dominated strategies to get S2 ⊂ S1.

Step 3: Strategies are dominated for which there exists x̃ ∈ [xi, xi] with

Ui(x̃i) > Si(x̃). Let x′ ∈ arg maxy Si(y). Let ε ∈ (0, Ui(x̃) − Si(x̃)). In the

case of x̃ < 1, suppose bidder j uses the bidding function Sj(1) = Si(x
′) + ε,

Sj(1 − x̃) = Si(x
′) − Si(x̃) and Si(x) = 0 for all other x. Under this bidding

function, bidder i wins nothing and gets zero surplus. If the bid on x̃ is raised

to Ui(x̃), then bidder i wins x̃ and gets strictly positive surplus. For x̃ = 1, let

Sj(1) = Si(1) + ε and 0 otherwise. Bidder i wins nothing if the bid is below true
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utility level and the full supply if the bid equals utility. The set S ⊂ S2 is obtained

by eliminating these dominated strategies.

After the three steps of elimination, all remaining strategies implement the

efficient allocation. To see this, let bidders use the admissible strategy profile

S ∈ S. The value jointly expressed for the efficient allocation is higher than the

value jointly expressed for any other feasible allocation x. Let xi < 1 for all i.

Then

Si(xi) + Sj(xj) ≤ Ui(xi) + Uj(xj) ≤ Ui(x
∗
i ) + Uj(x

∗
j) = Si(x

∗
i ) + Sj(x

∗
j),

where the first inequality follows from step 1, the second inequality from the

definition of efficiency, and the last equality from steps 1, 2 and 3. For an allocation

such that there is an i with xi = 1 we have

Si(xi) + Sj(x) = Si(1) ≤ Vi(θ) ≤ Ui(x
∗
i ) + Uj(x

∗
j) = Si(x

∗
i ) + Sj(x

∗
j),

where the first equality follows from step 1, the first inequality from step 2, the

second inequality from the definition of efficiency, and the last equality from steps

1, 2 and 3. All strategy profiles in S implement the efficient allocation. There

are no further dominated strategies, as any strategy that survives IEDS yields the

same expected utility as bidding truthfully.

To see that the VCG prices depend on the chosen strategy profile, consider a

bidder with θi sufficiently small so that Vi(θ) < Ui(1) and the other player having

the lowest possible type θ. The value of the efficient allocation is V (θi, θ). Suppose

bidder i chooses Si ∈ Si with Si(x) = Ui(x) for x < 1 and Si(1) = Vi(θ) and the

other bidder plays Sj = Uj. Hence, the VCG price for bidder j is Vi(θ)−Ui(x∗i ). If

the strategy profile was such that Si = Ui, then the VCG price would be strictly

less than that and equal to Ui(1) − Ui(x
∗
i ). Note that the strict inequality and

continuity imply that the difference in VCG prices holds for an open set of types.

Similarly, if step 1 was such that we also eliminate Si(1) > Ui(1), then the first

VCG price would not be possible.

References

Ausubel, Lawrence M., “An Efficient Ascending-Bid Auction for Multiple Ob-

jects,” American Economic Review, December 2004, 94 (5), 1452 – 1475.

43



and Oleg V. Baranov, “Core-Selecting Auctions with Incomplete Informa-

tion,” Working paper, December 2013.

and Oleg. V. Baranov, “Market Design and the Evolution of the Combina-

torial Clock Auction,” American Economic Review: Papers & Proceedings, May

2014, 104 (5), 446 – 451.

and Oleg V. Baranov, “An Enhanced Combinatorial Clock Auction,” Work-

ing paper, 2015.

, Peter Cramton, and Paul Milgrom, “The Clock-Proxy Auction: A Prac-

tical Combinatorial Auction Design,” in P. Cramton, Y. Shoham, and R. Stein-

berg, eds., Combinatorial Auctions, MIT Press, 2006, chapter 5.

BAKOM, “Neue Mobilfunkfrequenzen für Orange, Sunrise und Swisscom,” 2012.

Bichler, Martin, Pasha Shabalin, and Jürgen Wolf, “Do Core-selecting

Combinatorial Clock Auctions Always Lead to High Efficiency? An Experi-

mental Analysis of Spectrum Auction Designs,” Experimental Economics, 2013,

16 (4), 511 – 545.

BT, “Response to: Public Sector Spectrum Release (PSSR) Award of the 2.3GHz

and 3.4GHz bands,” January 2015. http://goo.gl/xaoDKY, accessed on January

8, 2019.

Cramton, Peter, “Spectrum Auction Design,” Review of Industrial Organiza-

tion, March 2013, 42 (2), 161–190.

and Axel Ockenfels, “The German 4G Spectrum Auction: Design and Be-

haviour,” The Economic Journal, 2017, 127 (605), F305 – F324.

Day, Robert and Paul Milgrom, “Core-selecting Package Auctions,” Interna-

tional Journal of Game Theory, 2008, 36 (34), 393 – 407.

Day, Robert W and Peter Cramton, “Quadratic Core-selecting Payment

Rules for Combinatorial Auctions,” Operations Research, 2012, 60 (3), 588–603.

Erdil, Aytek and Paul Klemperer, “A New Payment Rule for Core-Selecting

Package Auctions,” Journal of the European Economic Association, 2010, 8

(2-3), 537 – 547.

Goeree, Jacob K and Yuanchuan Lien, “On the Impossibility of Core-

selecting Auctions,” Theoretical Economics, 2016, 11 (1), 41–52.

44



Gretschko, Vitali, Stephan Knapek, and Achim Wambach, “Bidding

Complexities in Combinatorial Clock Auctions,” in Martin Bichler and Ja-

cob Goeree, eds., Handbook of Spectrum Auction Design, Cambridge University

Press, 2017.

Grimm, Veronika, Frank Riedel, and Elmar Wolfstetter, “Low Price Equi-

librium in Multi-unit Auctions: the GSM Spectrum Auction in Germany,” In-

ternational Journal of Industrial Organization, December 2003, 21 (10), 1557–

1569.

Janssen, Maarten C. W. and Vladimir A. Karamychev, “Spiteful Bidding

and Gaming in Combinatorial Clock Auctions,” Games and Economic Behavior,

2016, 100 (1), 186–207.

Kroemer, Christian, Martin Bichler, and Andor Goetzendorf,

“(Un)expected Bidder Behavior in Spectrum Auctions,” Group Decision and

Negotiation, 2016, 25 (1), 31 – 63.

Laffont, Jean-Jacques and Jean Tirole, “The Dynamics of Incentive Con-

tracts,” Econometrica, 1988, 56 (5), 1153–1175.

Levin, Jonathan and Andrzej Skrzypacz, “Properties of the Combinatorial

Clock Auction,” American Economic Review, 2016, 106 (9), 2528–2551.

Milgrom, Paul, Putting Auction Theory to Work, Cambridge University Press,

2004.

Ofcom, “Assessment of Future Mobile Competition and Award of 800 MHz and

2.6 GHz,” July 2012. http://goo.gl/KfQBsX, accessed on January 8, 2019.

, “Public Sector Spectrum Release (PSSR) Award of the 2.3 GHz and 3.4 GHz

bands,” November 2014. http://goo.gl/L4FjnM, accessed on January 8, 2019.

, “Annex 8 - Recent European awards,” Annual licence fees for 900 MHz and

1800 MHz spectrum, 2015. http://goo.gl/CYwDbM.

Power Auctions LLC, “Auction Design Considerations for the Pub-

lic Sector Spectrum Release, prepared for Hutchison 3G UK,” 2015.

http://goo.gl/rwacrm, accessed on January 8, 2019.

Telekom Austria, “Results of the Austrian Spectrum Auction,” Press Release,

October 2013. http://goo.gl/ZZV8eB, accessed on January 8, 2019.

45


	Introduction
	Auction Rules and the Model
	Efficiency and Information Revelation
	Efficient Equilibria in the Quadratic Utility Model

	Non-Existence of Efficient Equilibria with Large Uncertainty
	Inefficient Equilibria in the Quadratic Utility Model

	The VCG Mechanism
	Discussion and Conclusion
	Omitted Proofs
	References

